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ABSTRACT

This paper presents the feedback linearization of the
nonlinear AMB (Active Magnetic Bearing) system. The
system contains bounded parameters and some
nonlinearities. The full analysis of the feedback
linearization is presented. For the linearized system LQ
controlier is designed. The real system experimental
results for the tracking problem are presented.

INTRODUCTICN

In recent years a number of rotary machineries using
Active Magnetic Bearings were designed due to
elimination of lubricant medium, vibration, noise, high
velocities and loads. Most of those systems are
controlled by DSP processors and classical PID control
algorithm. A wide range of linear controllers was
developed for AMB systems [6]. Some of nonlinear
solutions were presented in [7], [8], [9]. The aim of this
paper is to show that the exact linearization method
improves control quality of the AMB system.

This paper continues author’s research on magnetic
levitation systems. Previous work had focused on one-
dimension magnetic suspension system. A nonlinear
control method was proposed [10]. The main conclusion
about exact feedback linearization was that the method
extends the stabilization area but suffers from high
sensitivity on model mismatch.

In the case of AMB system there is also necessary to
obtain a well identified mathematical model. The
magnetic bearing system is characterized by
nonlinearities coming from electromagnetic forces, state
and control constraints and electrical characteristic of
the power-supply actuator unit. Those strong
nonlinearities causes that the linear model obtained by
local linearization works well in a very small operating
area around the operating point. If the operating point
moves from the origin. the system can be unstable due

to neglected nonlinearities (for example: tracking
problem in the spindle application 5h.

What is new in this paper. First, the electromagnetic
force is modeled using coil inductance as a function of
the gap length. Next, the exact linearization method is
applied to single axis of the AMB. Finally, the system is
controlled from a standard PC computer, where the
integrated real-time control and rapid prototyping

. environment is used.

System description

The AMB laboratory model [i] consists of the rotor
suspended in two magnetic bearings. Each bearing is
controllted in two perpendicular axes. The rotor position
is measured by Bently Proximity sensors located in each
axis. Electromagnet coils are controlled from power
driver using PWM technique. Generally the system
consist of 12 measurements (rotor positions and coil
currents) and 8 control signals.
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DC motor Clutch

FIGURE }: AMB - Laboratory model

Mode! of the AMB
The Active Magnetic Bearing consists of 4
electromagnets controlled separately. Electromagnets
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are located in top and bottom of each axis. Figure 2

presents the configuration of the magnetic bearing and

* forces acting on the rotor.

FIGURE 2: Conﬁguraﬁon of the rotor in AMB

The electromagnetic force model is based on coil
inductance (1).

) L3 e, 0
dx, b

where:

L coil inductance for rotor located at the

1
electromagnet (distance equal to zero),
b, ¢ constant values,

X, axial rotor position.
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FIGURE 3: Coil inductance vs. rotor position

Electromagnetic force based on the proposed formula
(1) gives better representation than standard one, due to
electromagnet construction and air gap size. Forces
generated by upper and lower electromagnet are given
as follows:

] l
K =EL(I)(X1 ) x; N =5 (])(d_xl ) x:

p

The electrdrhéchanical model of the single axis is given
by (2). The control is differential.

X =x,

%= o 19) ) = 1= ) e D

x‘} = a}(“c-} _u)+ b3 _P13x3 (2)
‘ P2,

x 4 Vc¢+”)+bJ—P14x4
' P2,

where:

x, axial mass position,
x, mass axial velocity,
x, current in upper coil of the considered control axis,
x, current in lower coil of the considered control axis,
u control signal — PWM duty,

u_, constant control value,

u,, constant control value,

m mass suspended in bearing,

d maximum air gap [m)],

F,. = F,. gravitation force acting in control axis,

L() coil inductance,

a., b, Pl,. P2, actuator parameters i ={3,4}.

States and control signals are bounded as follows:
x,e[0,d], x,e R, x, e [0.s], x, € [0.5],

(4, —w)e 0], (u, +u)e [0,1].

Constant control values depends on the current values
chosen for the selected operating point. The selected
values of the system parameters (Tabie 1} were cbtained
by identification procedures. The inductance parameters
were obtained by optimization based on experimental
results retrieved from system stabilization in the steady-
state points.

TABLE 1: Parameters of AMB system

Parameter Value
m 0.00 [kg]
L, 52301-10° [H]
b 1.4897.10°  [m]
c -7.2187-10°  [H/m?)
d 8.0-10" [m]
a, 8.44714 [A]
a 8.39955 [A]
b, 1.56498 [A]
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b 1.66871 [A]

+

Pl, 0.802956
Pl, 0.799153
P2, 0.002512 [s]
P2 0.002322 [s]

1

For the operating point - rotor located in the bearing
center — the electromagnetic force characteristic were
calculated vs. rotor position and coil current. As shown
in Figures 4 and 5 there is high sensitivity on force
changes around the selected operating point.
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FIGURE 4: Force vs. current for fixed rotor position
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FIGURE §: Force vs, rotor position for fixed current
value

In this case standard local linearization can give
satisfactionary results only in small area around
operating point. Due to force changes the position and
current stiffness are varying. In this case the idea of
exact feedback linearization should be used to obtain
linear system.

FEEDBACK LINEARIZATION

The aim of this method [2], [4] applied for the nonlinear
mode!l is to obtain linear system (see Fig. 6). The
differential control strategy allows to treat each single
axis of AMB as Single-Input Single Output (SISO)
system.

Linear system

Y > Feedback
linearization ¥
* —> AMB

I—" method —]

The local model of single axis of the AMB system can
be described in general form:

i=flx)+ glx)u
y=hlx)

x,

1 I, _
T‘m"ﬁl)(xi)x: _EEI'L(])(‘J_J“—\)’Q +IFg\'

i

(3

where:

au, +b—Plx,
P2,

au, +b,—Pl,x,
P2,

flx)=

g(x)= T 1s h(x):xl'

The calculated relative degree for the analyzed model is
equal to 3. It means that the system contains internal

- dynamics. The control law decomposing the nonlinear

system is described by:

1
= _lv~-L’h
“=TT h(x)(v hx)) @
where:
] Of 4 _
Lng’.h(x)=-x3L (xi) a _x4L (d xl) a,

m, P2, m, P2

4

B )= 2 )+ 9=
1]

N % )au, +b, - PLx,

m, P2,
N x,L9d-x)au, +b,—Plx,
m, P2,
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L= g, 1 2,

are Lie derivatives of the function % across the vector
fields f and g respectively.

New coordinates are given in the following form:

z, =X,
z, =.7c2
5
R0 R SRR LY M
i

l

Due to that relative degree value is less than nonlinear
system size, it is necessary to find the coordinate z,, to
complete the transformation. Assuming that
Lg¢4(x)= 0, the following partial differential equation

should be seolved:

a¢4 (x) _ % a¢4 (x) 4
a, | P2, | ox, |P2,
This can be done, assuming;

a a
=¢.(x)=—x +2x (6)
) P2, P2t

The Jakobian matrix of the transformation defined as;

1 0 0 0

6 1 0 0
J(':D(x))= Jau 0 Iy Jy, |

0o 0 J,, J

43 4.4

is nonsingular for almost all x. The condition
JooJ#J,J,,  satisfies non singularity. That

condition means e.g. that coils currents should have
different values for the rotor located in the bearing
center. In this case there exists global coordinates
transformation from nonlinear system form to the linear
one. The linear system dynamics is described by (7):

Z =z,
z,=1z,
zZ,=v )]
PR A s b-Plx, a au,+b-Plx,
‘P2, P2, P2, P2,

Coordinates x, and x, can be obtained as a solution of

the equations for z, and z, given in (5) and (6)

respectively. As a result two possible solutions are
given for each variable. Setting:

F.

a3, p—s ), p= T

2m 2m, m,
S=-2 k=2 poox’+ B8
P2, P2, * A

4

the equations describing x, and x, coordinates as
functions of z, i z, are given in the following form:

i xJ(— 8 pr - 2, + o +ﬁ'§‘z*)

p
or
. k|- 8" oz - pm, il + 57z, )
1, P s
axz, -6 py — pz, +ofk] + 6z,
IA‘_| =
P
or

oz, +8°

4H

PX = pz,tafe] + fd’z,
P

The result of analysis shows that only x, and x,,

satisfies states constraints. One can notice that for the
analyzed system — single axis of AMB controlled
differentially - it is possible to neglect the dynamics
described by the fourth equation given in (7), because
there is no influence on contro! and other system states.
So, the linear system is obtained:

Zy
Z,

(8)

w. N
1l

I
<

1

Due to existing state constraints of nonlinear system it is
necessary to estimate constraints of the linear one (8). It
can be done using simulation procedure. Constraints
values for control v and state z, are presented in

Table 2.

TABLE 2: Single axis parameters bounds

Parameter Value
Z3 3 -3.606:10°
Zy 321510
Vi 0.0
Voo 1.769-10°
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The state constraints for z, and z, are the same as for

x, and x, .

L.Q Controller design
If the desired output of the linerized system (8) is given
by z,=[z,.2,,.2,,], the error vector e can be defined as:

e=z,-z.

A typical guadratic cost function has the form [3]:
J6)=3 [ @0elr)+ e Wvlelie ©®)

where:

Q is a non-negative definite matrix, 0=0,0=0"

R is a positive definite matrix, in this case R is a scalar.
It can be easily verified that the pair (4,8) of (8) is

controllable. The LQ optimal control ¥" is given by:

v =-K(z,-z) (10)
where K is the feedback matrix.

The settings for the LQ controller were calculated
numerically and next implemented to the simulation
model and real system. One selection of the controller

parameters is Q= diag(1.2-10%,1-10%1.10°), R=1,
K=[.7702-107 53518 —12449-10" 1.8629-10%]
Controller parameters were calculated for the setected
operating point x=[4-10* 0 1314 o).

REAL-TIME EXPERIMENTS

Real time experiment were performed in Windows 2000
environment using MATLAB/Simulink application with
additional toolbox RTWT [11].

AMB > Rotor
PWM control positions [m]
DC - | [ > Rotor velocities
PWM control [m/s]
Reset )
Encoder = = —»  Currents [A]
DC ,
Brake I ]

AMB system
FIGURE 7: MATLAB/Simulink interface

The AMB system block presented in Figure 7 centains
analogue input, encoder input and PWM output drivers
to perform measurements and control. The AMB system
was connected to the computer by the RT-DAC3 multi
/O board [12] equipped with XILINX programmable
chip. User defined logic for the AMB :system was

applied. The simulation controi loop scheme for a single
axis is presented in Figure 8.

TFx2z +_ K 0

x1 [m]

= x2 {m/s] ,
ATV [A]
FL : x4 [A]
AMB local W‘
FL dynamics

FIGURE 8: Control loop

The TFx2z block contains transformation from x to =
coordinates. The AMB local FL block contains the
control formula (4). For the real-time experiments the
signals incoming and outgoing from the AMB local
dynamics block were replaced by the AMB system block
signals (see Figure 7). Real-time experiments were
performed. The goal of the left bearing was to stabilize
rotor position at the bearing center. In the right bearing
desired rotor position was changed. First the square
wave was set to obtain rotor movement in vertical
direction. Rotor desired position was set £2.5-107m
around the center. The result of the experiment is
presented in Figure 9. '

FIGURE 9: Right AMB — vertical rotor stabilization

Next, the shifted sine waves were applied to both axes,
to obtain the circular trajectory of the rotor. The result
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of this experiment is shown in Figure 10.

Y

FIGURE 10: Right AMB - circular motion with radius
equal to 2.5-10" m

Finally the stabilization at the bearing center was
applied. The rotational velocity was set to 550 rpm. The
result of stabilization is presented in Figure 11.

FIGURE 11: Right AMB — stabilization at 550rpm,

Notice that described model of the AMB doesn’t take
into consideration the rotational velocity of rotor. As
shown above the feedback linearization method gives
high stabilization zone and gives good results even the
low stiffness is set (due to x, =0). As an example of
practical application of that control strategy can be in
spindle machines. High stabilization range allows to
minimize tool length. Another shape of the desired rotor
movement can be easy adapted.

CONCLUSIONS

The feedback linearization gives the very high
stabilization range of the rotor. With the LQ controller
designed for the closed-loop AMB linearized system,
the range of circular rotor movement was up to 500

micrometers. For the LQ designed for the system
linearized in standard way the range of circular rotor
movement was 30 micrometers. Feedback linearization
method works successfully if model of the process is
properly defined and all parameters are exactly
identified. Process and model differences influence
strongly on the control quality. For the laboratory
Active Magnetic Bearing system used for this research,
some parameters are difficult to identified e.g.
inductance vs. rotor position.
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