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Abstract : In this paper, Inpui-Output exact lineariza-
tion techniqu considering modal characteristics of a ro-
tor is proposed for AMB systems. The Ist, the 2nd and
the 3rd modes of rotor are takrn into account of con-
trol system design. And gyroscopic effects are teken. In
order to utilize modal characteristics of the roter with
exact Input-Output exact linearization technique, AMB
control systems are treated as MIMO systems. The ef-
fectiveness of the proposed method is confirmde by lev-
itation and rotaiing ezperiments.

1 INTRODUCTION

Nonlinearity of magnetic force is one of difficulties for
AMB control. To overcome the difficulty, push-pull coil
configuration has been widely used. From the view-
point control methods, almost all of the AMB control
systems are designed as linear due to its simplicity and
easiness of the parameter tuning. In general the lin-
ear approximation model of the plant around the equi-
librium point is adapted for AMB system. But, on
the control system designed by using such linear ap-
proximation model, the effective range is limited to the
points around the equilibrium point. So we can’t stably
levitate AMB at the distant points from the equilibrium
point. In order to improve the performance of AMB
control system, it is necessary to develop a nonlinear
control method for AMB. On the other hand, owing
to the disregard of high order modes, spillover happens
and its control system becomes unstzble. In this pa-
per, exact linearization technique considering charac-
teristics of a rotor is proposed for AMB systems. As
exact linearization technique yields the linear system
that is exactly equal to the linear approximation model
of the plant around an equilibrium point, we can stably
levitate AMB at the points distant from the equilibrium

point. In order to utilize modal characteristics of the
rotor with exact linearization technique, AMB control
systems are treated as MIMO systems. We can con-
trol the spillover by taking the high order modes of the
rotor into consideration of the control system design.
The modal characteristic of the rotor enables us to con-
struct the high performance control systems. But, in
case that AMB system are treated as MIMO systems
which consider the dynamics of the rotor, the Input-
State linearization technique cannot be applicable be-
cause of the complexity of models. But, it is shown that
the Input-Output exact linearization technique applica-
ble. Based on the results, the nonlinear state feedback
controller, i.e. the inputs exchange and the coordinate
transformation, is constructed. The MIMO exact lin-
earization of AMB systems enables us to consider the
dynamics of the rotor on linear controller design pro-
cedure. Firstly the mathematical model of the AMB is
introduced and it is confirmed that MIMO exact lin-
earization is applicable to AMB system, and that the
inputs exchange and the coordinate transformation and
the nonlinear states feedback are derived. The effec-
tiveness of the proposed control method is evaluated
by experiments.

2 MIMO MODEL OF AMB

The diagram of a considred AMB rotor model is shown
in Figl.Let the mass of the rotor be M, the left rotor
1, the second disc mg, the i-th disc m;, the right rotor
my,, displacemant from the equilibrium point 1, * - -, 2;
and z,, respectively. The length from the disc center of
gravity to the next disc and the rotor is [.The rotor
assumed to be flexible.
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Figure 1: AMB rotor model
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The inductance of upper and lower left coils L;; and
Ly, are expressed as
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where Q,X and Lo are constant parameters deter-
mined by identification experiments, and W is gap be-
tween the rotor and bearing at the equiribirium point.
Similarly, the inductance of upper and lower right coils
Ly, and L,o are
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The magnrtic levitation forces of left and right AMB
are denotd by f; and f, respectively. And

M1 = Mn = ma, Mmi = mg{i=2~n-1) (7)

fi=fi, fi=0@G=2~n-1), fn = f (8)

So, the dynamical equations are then expressed as
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The currents of upper and lower coils of left AMB
are i1, 12, and .1, i,2. The magnetic levitation forces
ft and f, are described as follows:

where k are constant variables which are determined
by identification experiments.

The circuit equations are expressed as
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3 AMB MODEL

The more natural model is here employed as shown in
Fig.2. The control inputs are e for the upper AMB
circuit and —e for the lower circuit.

e1=E te, ea=FEz—e¢g (28)

where E; and F; are bias volts for upper and lower
AMB circuits. The currents of AMB circuits 4, and i2

L é R i}i_i-ﬂ[el-"-Eﬁe

L2 é R iz=k—?z| er=Ex-e

Figure 2: An axis of AMB system (4th order model)

are _ _

i1 =D +11, ia=1I—12. (29)
where I and [z are bias currents caused by bias volts
E, and E.. In this case, defining state space variables
asx =]z & 41 1 ]T, a state space equation is
obtained as follows:
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4 MIMO INPUT-OUTPUT
LINEARIZATION

In this section, nonlinear control system is derived
AMB rotor system. Based on the AMB MIMO model

cobsidering rotor modal characteristic, and exact input-
output linearization is carried out. First of all, define
the output 1, - -+, x;, - » -, &3, a8 New state variables £1,
.+, &, -+, &3. Then, also define the derivatives as new
state variables and repeat the operation until the input
of the system appears in the output as follows
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€an-1,E30]T. The linearized state space equation then

Now, define the state variables as & = [¢;,6, -+,

the linearized state equation is
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5 EXPERIMENTAI RESUITS

Fig.3 is the picture of the experimental equipment.

Figure 3: Experimental equipment

Fig.4 is the schematic of AMB system.
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Figure 4: AMB system

5.1 LEVITATION EXPERIMEBNTS

In this section, the resuits of rotor levitation and ro-
tating experiments with input-output exact lineariza-
tion technique are shown. The physical parameters of
the experimental rig are M: 5.03[kg], ma: 1.81[kg|,
mp: 1.41[kg] g: 9.81[m/s?], & 0.355(m], EI: 203[N-ml,
R: 0.6[S, I: 2.23[A], L: 05[A], k: 1.414 x 1075,
X: 0.1201x1073[m], W: 0.4 x 1073[m], Q: 2.828 x
10~%[m-H] and Lo: 1.111 x 10~3[H]. The linear part of
the control system is PID controller whose parameters
are P 13000, I: 3000, and D: 30.

Fig.5 shows the experimental result of PID controller
with input-output exact linearization. Fig.6 shows the
result. The set point ratchets up from the equilibirium
point in the experiments. In Fig.6, since the perfor-
mance of PID controller is poor, the response of the
control system begins to oscillate at the point 0.1[mm]
distant from the equilibirium point. On the other hand,
the control system using nonlinear controller for input-
output exact linearization does not however oscillate.
By these experimental results, the effectiveness of the
input-output exact linearization to enlarge the stability
region is confirmed.

20 50 80
time{sec]

Figure 5: PID with input-output exact linearization

-, . s e

40 0 ® n [] %0 100
time[s]

Figure 6: PID controller
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5.2 ROTATING EXPERIMENTS

Fig.7, Fig.8, Fig.9 and Fig.10 are results of rotating
experiments. Left figures are results of PID controller
with input-output exact linearization. Right figures are
results of PID controller. The gap of the exigent bear-
ing is 0.2]mm).The linear part of the control system is
PID controller whose parameters are P: 8000, I: 3000,
and D: 30.

L& bk &
>°-E a0

o} - - —

! H

o wl

Figure 7: 500{rpm)]

Figure 9: 1700[rpm]

Figure 10: 3500[rpm)]

Fig.8 is the diplacements of X-axis and Y-axis at the
critical speed of the 18t mode. At this point, both con-
trol systems oscillate and get in touch with the exigent
bearing. At other speeds of rotation, the control system
using nonlinear controller for input-output exact lin-
earization is however more stable than PID controller.

6 CONCLUSION

In this paper, a control system design method for flex-
ible rotor AMB system was proposed. The design
method is based on the natural model of the push-pull
type AMB system considering rotor modal characteris-
tics. Using input-output exact linearization technique,
nonlinear control system was designed. In the case of
poor linear controller, it was confirmed that nonlinear
controller supported the linear controller and improved
the control system performance. -
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