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ABSTRACT

Implantable left ventricular. assist devices are pow-
ered by batteries; their limited capacity has to be
used as efficiently as possible. It was demonstrated
on the example of s MAGLEV centrifugal LVAD that
by designing an optimized controller a remarkable re-
duction of power consumption could be achieved, es-
pecially for transient disturbances. The key concept
is the combination of exact linearization to decouple
the system and the application of adaptive vibration
control. The potential benefits of the nonlinear con-
troller are discussed. '

INTRODUCTION

The rotor of the Bearingless Slice Motor is a two pole
permanent magnet with an -almost sinuscidal field
distribution. A detailed description of the applica-
tion can be found in [15] and [16]. Any eccentricity
(we face a large air-gap magnetic bearing, see [14]) of
the rotor causes nonlinear force distributions, which
have to be considered in the design of a suitable con-
troller. The forces vary with the magnitude of the
eccentricity and also depend on the angular position
of the rotor. Furthermore these forces cause an angu-
lar dependant coupling with coupling forces achiev-
ing up to 50% of the desired or applied force. The
discussed coupling arises from the specific setup con-
sisting of the permanent magnet and the disc shaped
rotor. It is therefore desired to eliminate the nonlin-
earity to obtain a model with constant stiffness and
no coupling forces. This is the purpose of a decou-
pling controller which compensates the interconnec-
tions of the multivariable (MIMO) system in such a
way, that the overall system then behaves like two
decoupled single input - single output (SISO) sys-
tems. The decoupling controller is expected to be
robust against parameter changes to ensure success
in an industrial application.

The field of decoupling controllers has been inves-
tigated for a long time(see [2] and [7}); for magnetic
bearings i.e. [1]; in [3] 2 modal decomposition of the
differential equations is proposed. A key issue why
nonlinear control is applied in an increasing number
of applications is to have a constant system perfor-
mance across a large operational area. Since in the
considered case the nonlinearity affects the stiffness
of the plant depending on the angular rotor posi-
tion, no local linearization is applicable. Further-
more the nonlinear coupling could not be compen-
sated by any decoupling strategy. Decoupling can
also be achieved through feedback linearization. For
the theory concerning the exact linearization method
for MIMO systems the reader is referred to [6], [12],
[13] and [18]. Since we face a strong nonlinear cou-
pled system, we can expect the nonlinear decoupling
controller to be more efficient than a controller de-
signed for any linearized model. The exact lineariza-
tion method has been applied to magnetic bearings
several times, see i.e. [11] and [17]. Multivariable
state feedback in our case is necessary; nonmeasure-
able state information is provided by an observer. In
[9] Kawanishi states, that in MIMO-treated active
magnetic bearing systems, considering rotor dynam-
ics, input-state linearization technique cannot be ap-
plied due to the complexity of the model. In our case
input-output exact linearization technique is applica-
ble. The reference controller {the former design) is a
tuned and optimized PID position controller with an
underlying PI current controller designed for inde-
pendent SISO (single input- single output) systems.
It reacts onto coupling forces as if they were inde-
pendent disturbance forces. In order to apply opti-
mal controller outputs the angle of the rotor also has
to be an input parameter of the new controller, but
not only for coordinate transformations as it was for
the former controller design. Numerical simulations
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FIGURE 1: Unbalance Force

are presented to demonstrate the optimal nonlinear
implementation. Measurements on the implantable
blood pump illustrate the effectiveness of the pro-
posed controller in the last section.

NONLINEAR MODEL

The rotor of the bearingless slice motor is a perma-
nent magnet with two poles (p = 1, with p being
the number of polepairs). No unbalance is assumed
which equals to no forces acting on the rotor in cen-
ter position (e = 0). A rotor displacement off center
(see Figure 1) (e # 0) causes an additional force. The
magnetic induction B depending on the angle ¢ and
on the orientation (and <, indicating the direction
of magnetization) can be described as:

Bo(p) = B - cos(pp — ¥m) (1)

The airgap depending on the eccentricity and on
the angle (see [8]) can, in a simplified way, be ex-
plained as:

be(p) = bo — €~ cos(a — p) (2)

The magnetic induction depending on the airgap
do (and with Ipps the rotor radius) leads to:

lpa + 0o
lpa + 0

After the integration (for p = 1) of the differential
force, and some straightforward calculations (see [4])
the force acting on the rotor emerges to:

B, (¢’) = BD(‘P) (3)

- z

F:ks'(f-}-csC')-[y] (4)
where

_ (2y)  sin(2y)

- [ :ﬁ (21) -sos (27) ] (5)

with ks denoting the stiffness of the magnetic
bearing and cg being the coupling parameter be-
tween the two axes z and y. Note: Coupling here
only occurs for p = 1. As visible in the arguments
on the harmonic functions a w-periodic component
arises for cg # 0 which is the source of the nonlin-
earity considered in this paper.

Extension of Model

The derived additional force component has to be
taken into consideration for getting a model of the
bearing. Equation 4 consists of two components in
the feedback path of the bearing model: a constant,
a well known one, the stiffness kg of the bearing
and another one, the ¥-dependant part. This matrix
can further be split into two components: the diago-
nal (cgkscos(2vg)) blocks for stiffness variation and
the non-diagonal (cskssin(2+g)) blocks for coupling,.
The first one adds to the bearing stiffness kg and the
latter is the source of the axial interaction and can
be seen as an additional disturbing force. Figure 2
shows the influence of equ. 4 on the model for the
two-axis magnetic bearing!.

Description of the Model

Several nonlinear effects which occur in the investi-
gated magnetic bearing are not considered:

e The force-current characteristic is assumed to
be linear and independent of the roter position
as well as the natural stiffness for a fired angle.
fmag =ki-i+tky-x

o Position sensing is assumed to be linear in the
area of interest

¢ The power converters are treated as idealily fast.

e The rotor is 2-pole sinusoidal magnetized and
has no unbalance

s R and L are constant and independent of the
air gap

e All electromagnets are identical

The focus of this paper is on the angular stiffness and
on the coupling dependency. The (bearing} model
derived above is described in equ. 6. The motor
part is omitted, since it follows standard design pro-
cedures. w and 7y remain states. For transparency
purposes two simplifications have to be made: Use
the approximations for R and L mentioned below
and set C; = 0, which means that iron core satura-
tion effects are not considered in the model.

1The same coupling and parameter variation is applicable
and occurs for the forward path for the mulsiplication with k;
in the model but is of a significantly less influence. C; is of
the same structure as Cs.
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FIGURE 2: Bearing Model

i=liaigiml” E=lyal’ E=lwv ol

Lyy ILn2 Lig where Li; = 0 for i # j
L=| Lay Loz Laoa and Li1 = Ly
i L3 L3z L33
Ryy Ri2 Ris where R;; ~ 0 for i # j
R= R21 R22 R23 and Ri11 = Ra2
i R3; Rse Rj33

where i: currents in coils, £&: pasition of rotor

£&: speed components.

g= f(z) +g(z) v y=h(=) (6)

where z € R™ is the state vector, f(z) and g(z) are
real smooth vector fields on R, and v is the control
input.

glz) =L 1 u (7

%i =L 'R-i— L% & +g(e)-u  (8)

%g =I¢ (9)
%é=%(1+a0)'[§:]

+k“ni (I+¢C)- [ . ] + Zim (10)

The focus of the presented model description is on
the bearing, the drive model is straight forward, all
nonlinearities except magnetic forces are neglected.

AI LINEARIZATION

The system is exactly linearizable. Exact input-out-
put linearization considering the dynamics is applied
on the MIMO (multiple input-multiple output) sys-
tem and enables the decoupling of the system. The
system is then fully independent of the rotational

FIGURE 3: Linearized Model

speed and the angular position. The theory of exact
linearization is covered by many other publications
and, as mentioned, omitted here. Applying the algo-
rithms described in [10] to the nonlinear model de-
scribed in equ. 6 one obtains the feedback law equ.
12. It consists of two parts: the internal feedback
and a new control variable v;p.

[ Zd } =afz)+B(x) - vin = (11)

q

[ ag(z) } + Bla) - [ Vd,in ] (12)

org () Ug,in
oo = ksCsc08(2Y) 05 = ket,sin(2v) (13)
mi
s = 5 | 14)
ki
aq(z) = (Ri1 — L1y - a12) - ia
—%‘:‘- (m - a10 + a1z (k, +og)) -z
. +%}Us Y
(ki— 2 (m-an + ke + 5c)) -vs (15)
—%1;103 - vy
_-1-2%103 -w
—2%0‘0 cY-w
oglz) = (Roz — Loz a22) - g
+£k2f~as i
—La2 (m a0 + a1z (ks —0c)) -y
L
~Bos v (1
(ki'_ 22 (m - ag1 + ks *Gc)) $ Uy
+2-Iﬁ20'3 W

~—2%{lac - T W

The MIMO system now consists of the two new
transfer functions Gg4e = mﬁm for the x
and y-axis if a;; = ag; which is reasonable for this
symmetric system. The values for a; may arbitrarily
be chosen. A superior controlier has to be designed
for a plant described in equ. 17, with the control
input vin. In a specific case, where the reference

value remains constantly zero, it might be paossible
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FIGURE 4: Stiffness Linearization

to omit any superior controller. This increases the
necessity of well chosen values for a;.

T 0
Gcl — [ s%+4az8%4+a;stao

1
s5+azs?+aystao

| an

CONTROLLER DESIGN

We still need to choose reasonable values for a;. If
¢, = 0, we have a linear SISO system. The resulting
feedback can be seen in equ. 18 for the z-axis which
is the same as equ. 19 for the y-axis.

agr{z) = (R—L-a2) iqg
—f: (m-ao+ asks) -z (18)

(ki_ f:?(m'al +ka)) * Uy

gz (@) = (R—L-a3)-i,

—F (m-a0+azke) -y

(k,— - 754 (m-a1 + ks)) “Uy v

We have a simple state controller with the feedback
law described in equ. 20 and 21.

KS'C = [chrr Kpos ﬁvell_l (20)
Keurr = ~R+L-a

Kpos = £ (m - ag + azk,) (21)
Kypel = k% m-ay + k) — ky

There remains the discussion of designing a feed-
back controller to obtain optimal values for the pa-
rameters ;. Applying standard LQ-design with the
cost function

N
J= %Z (=7 (k) Qz (k) +uT (k) Ru ()  (22)
k=0

results in the Riccati equation

Variation of Coupling
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FIGURE 5: Coupling Compensation

P=Q+ATP(A- BK) (23)
with 1

K=(R+B"PB) BTPA (24)
as the solution. A and B being the system matri-
ces of the linear (¢, = 0) system. The translational
speed in the plane of the disc is observed by a Kalman
observer. As a superior controller there was simply
chosen an integrator. The obtained control voltages
are in rotor frame and need tec be transferred into a
stator fixed coordinate system.

Single Fault Tolerance

The industrial application, the controller is designed
for, is single fault tolerant. Single fault tolerance
requires a further extension of the control strategy:
Fault handling routines have to ensure a linear signal
path to avoid any discontinuities.

Adaptive Vibration Control

Additionally vibration control algorithms are run-
ning on the blood pump. While the control algo-
rithms presented above focus on transient distur-
bances and hence reduce the energy consumption,
vibration control deals with much larger time con-
stants. The achievable benefit was further discussed
in {5].

EXPERIMENTAL EVALUATION

Simulations have been carried out to compare the
feedback controller design under many different con-
ditions with the reference controller. After implan-
tation the controller has to withstand many differ-
ent challenging load conditions. For this reason the
feedback controller design was tested under numer-
ous conditions. A few results can be presented here.
Figure 4 displays the achievable linearization for four
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FIGURE 6: Transfer function without Comp.

frequencies 40, 50, 60 and 80Hz. Depending on
an additionally introduced parameter (k,, -axis in
plot) the compensation performance can be mon-
itored and optimized. With ¢, = 0.25 the vari-
ation between maximum and minimum stiffness is

1.7 = %:— and can be reduced to the ideal and

full compensation 1{= ¢, = 0) for the lower and to
about 1.2 for the higher frequencies for x, = 0.75.
The other measure of linearization performance is
decoupling, displayed in Figure 5. With ¢, = 0.25
again we have 0.25 coupling force for no compen-
sation, or k. = 0. In practice an almost decoupling
(which is frequency dependant) can be achieved (ide-
ally 0, which means no coupling force, hence full de-
coupling). Now ¢, can be reduced to about 0.1 for
Iower and about 0.15 for higher frequencies, with the
optiroum for s, = 0.45. Both parameters, kK, and K¢
are in practical use close to the theoretically derived
values.

Besides measuring the effects cne wants to achieve
directly (like energy reduction), another reasonable
tool to prove the effectiveness of the linearization is
the transfer function measurement. Figure 6 shows

the comparison between the theoretical (dashed curves)

and the measured transfer function (solid curves), for
the two extremes. One measurément was done for
maximum stiffness; the measurement was averaged
for four positions (0, z-excitation; §, y-excitation; ,
z-excitation and %‘ﬂ', y-excitation) to eliminate any
dissymmetry in the setup. The maximum error does
not go beyond 2d B, which is mainly due to measure-
ment errors than to model uncertainties. Accord-
ing to this the measurements for minimum stiffness
were done. After compensation one obtains Figure 7.
Again comparisons between the theory and the mea-
surements are displayed for the minimum and the
maximum stiffness. Apart from the frequency range
60— 80H z where a 2d B difference could not be elimi-
nated, almost exact compensation was achieved. The
other effect besides linearization is decoupling which
is displayed in Figure 8. Considerable reduction in

Optimized Tf Measurement vs. Theory

w0 -t l‘l‘
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FIGURE 7: Transfer function after Compensation

coupling forces could especially be achieved for the
lower frequencies and were still satisfying in the fre-
quency of the major point of operation. The dashed
graphs are the direct transfer function (upper, i.e. =
vs. z) and coupling for angle 0, which corresponds to
no coupling. The two solid lines represent coupling
before (upper) and after (lower) compensation. This
equals an improvement of up to 40dB.
Considerations about robustness against paramn-
eter variations also were done but are omitted in this
paper. Power reductions in percentage were difficult
to obtain. The magnetic forces are sources for the
second harmonic which can be compensated by vi-
bration control. These forces are the main reason
for compensation and hence for an achievable ben-
efit out of the presented control strategy. There-
fore, with vibration control turned off, the possible
power reduction is highest. It reaches, depending on
the disturbances, load conditions, rotational speed,
medium to be pumped as well as setup and impeller,
up to 26%. It can averagely be stated, that with
vibration control turned on 2, a reduction in energy
consumption of 5% to 15% can be achieved.

SUMMARY

Exact linearization method was applied to a disc
shaped rotor. With this, linearizing feedback con-
troller measurements, especially for transient distur-
bances but also long term measurements were done
to verify and prove the capability of the controller
based on the linearization technique. The decrease
in power consumption is shown and discussed. Mea-
surements showed no interference or unwanted inter-
action between the position and vibration control.
For example, step responses are now independent of
the angular rotor position and the plant acts now in

2This is the only case with practical relevance for this ap-
plication. For other bearingless slice motor applications with
the same behavior in the transfer function the same control
strategy might be applied without vibration control.
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Coupling Compensation

FIGURE 8: Coupling with / without compensation

a decoupled way. Future activities will focus on addi-
tional simplification and adaptation of the algorithm
for a further improvement of performance.
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