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ABSTRACT

In this paper we propose an unbalance compensa-
tion method, which is able to work through a wide
range of rotational speed. Actually the vibrations
due to unbalance or eccentricity on the rotor con-
tain the direct synchronous rotational speed signal.
Tt is not reasonable using an extra rotational sensor
to measure the rotational speed. Thus a resolver-like
evaluation of rotational speed is proposed to serve as
the necessary synchronous rotational speed signal.
The speed of rotation is directly evaluated from the
unbalance driven compensation signal.

The unbalance compensation without using a ro-
tational sensor are realized successfully on a test rig
with 25 kg-rotor from 0 to 28000 RPM. Moreover, a
speed control using the evaluated speed signal is also
implemented.

INTRODUCTION

Rotor unbalance is an usual phenomena in rotating
machinery, it may induce undesirable vibrations or
noise. By using the benefit of contactless levitation
in AMB, it is possible to achieve a force-free opera-
tion if the rotor rotates about its principal axis.
There are different approaches {1, 2, 3] including
feedback and feedforward compensation to achieve
such a force free operation, but physically all of the
methods lead to a rotation about the principal axis.
In order to cancel the synchronous vibration, the
rotational speed must be available. It is normally
delivered by a tachometer, resolver or another type
of rotational sensor. In some applications, it may
be difficult or impossible to attach a suitable rota-
tional sensor. If there are electrical machines in the
system, the rotational speed can be derived by us-
ing self-sensing technique. However, in cases where
there are no electrical machines, such methods do not
work. In [4] the rotational speed can be derived by

adding into a phase-locked loop (PLL)-like adapta-
tion algorithm, which works with internal compensa-
tion signal. The converging rate of speed estimation
must be set faster than that of compensation adap-
tation. Obviously a tradeoff exists since increasing
the converging rate beyond some limit destabilizes
the closed-loop system.

In case of permanent magnet biased magnenc
bearings, a current-free operation may be preferred
than a force-free operation. In this case, a rota-
tion about the principal axis may cause synchronous
bearing forces due to the permanent magnet (PM), if
the principal axis is not coincident with the geomet-
rical axis. To ensure a force-free operation, a current
must be added to eliminate the bearing forces due
to PM. This may lead to saturation of the power
amplifier.

In stead of a force-free operation, a current-free
operation can be achieved, if the rotor rotates about
an axis between its principal axis and geometrical
axis (Figure 1). Moreover the control currents are
the outputs of the controller, thus they can be ac-
cessed directly and precisely without current sensing.

CURRENT-FREE COMPENSATION

In this paper we propose an unbalance compensation
method, which is able to work through a wide range
of rotational speed. Due to the limited power of the
amplifier, we will apply only the current-free opera-
tion on the test rig, which is setup with permanent
magnet biased magnetic bearings.

In the reality an eccentricity on the sensor ring is
almost unavoidable. This causes also a synchronous
vibration since the position sensor delivers an error
signal. It is theoretically not difficult to eliminate the
synchronous vibrations due to rotor unbalance and .
eccentricity of sensor ring, if the locations of them
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FIGURE 1: current-free operation

are known. However they are generally unknown
amounts and may be changing continuously. It is ap-
parently necessary to have an adaptation algorithm
which is able to ensure the current-free operation
automatically. Before the derivation we need some
definitions; the vectors will be written as complex-
numbers:

. Iass

ks  force-displacement factor
current-displacement factor

kp  gain of P-control

kp  gain of D-control

fp  force-factor of P-control, fp = kpk;

fp  force-factor of D-control, fp = kpk;,_,

Tso = Zs0 + j¥se € C  compensation signal

im = im, + jim, € C magnetizing current

V.U PecC vectors in rotor-coordinate

In general the bearing force can be given by

fo = kyry — kimim ’ . (1)
from the Newton's law we can obtain the equation
of motion about mass center ¢

mitc = fy = katw — ki, im )

Now an open-loop synchronous compensation signal
T'so should be added to the control loop. The force
created by the controlled magnetic bearing is:

Kipim = fp(Ts —Tso) + fp(Fs — fso) (3)
Using the relationships between vectors in Figure 2:
Iso = Pelft (4)
re =1, + Vel™ (5)

FIGURE 2: current-free compensation of syn-
chronous vibrations

Tw =T1s + Ue/? | (6)

we get the equation of motion about the position
sensor's sensing point s:

miy = KoLy = ki, im + (mQPV + k,0)e’™ (7)

Since we want to minimize the magnetizing current
im, it is better to write Eq.(7) in form of i,,:

(mim + erim + krim)
= UrHIeD (4, 4 mat)P 4+ m?V 4 5T ]
(8

T
Where, the ¢, = fp is the damping coefficient and
k, = fp —k, is the stiffness. It is easy to realize that
this equation has the structure of a spring-damper-
mass system. The synchronous vibrations deduced
by U and V work like a source of disturbance, which
drives the vector in,.

If we can find a compensation signal ry, = Pei"
which let the right hand side of the Eq.(8) be reduced
to zero, then the vector i, will converge to zero too.

In rotor-coordinate we can write:

?-»-[§V+(1--i-)ﬁ], 9)

where

oe k, + mQ2
T mQ?
Physically the rotor rotates about the point o, which

is a point between center of geometry w and center
of mass ¢. Since the position sensor will catch the

(10}
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sensing point s instead of center of geometry w, the
compensation signal yields therefore Pe/S¥.

Now we have to find out the vector P. Because
both of vectors U and V are unknown, it is therefore
necessary to have an adaptation algorithm which is
able to solve P automatically.

For this purpose Eq.(8) can be rewritten to:

“ . m? = _i€d
: i,

™m

where:

§ = 5. +38, = (fr + i )(V + "f‘;z,_,ﬁ) (12)

and

R =R, +jR, = (fp + ic )P (13)
Because the right hand side of Eq.(11) is a sine wave
excitation, the stationary solution is given by:

< ) (oR + S)ef ‘
m T ke — i) + o ft (14)

im
Now we have to solve an optimization problem: look-
ing for a R which minimizes the energy density of the
vector im:
1/, i 1. .
= E (Z?nc + l?ny) = ‘2‘ sl * im” (15)
Using the steepest decent method, the time deriva-
tive of R is set in the direction of gradient of the
function @, therefore we can write the adaptation
law as following:

= Bim \",

R= —TVQ= —-T (51?;) I
— . k, +m? edit

- k; (kr — m§2) + je 2

= ~7(n + j¥2)e Him

]* i 16

Where 7 is the convergency factor, which determines

the converging rate of the adaptation. 1 corresponds
the time constant of a first-order lag. v, and s are
parameters dependent on the rotational speed:

_ k, +mQ? _ k, — mQ? an
m= (kr — mS22)2 + ()2 ¢
ks + m$)? e o
Using:
R = Re/™ (19

the vector R in rotor-coordinate can be transformed
into the stator-coordinate R. Then the adaptive al-
gorithm in stator-coordinate is given by:

R= JOR — 7(m1 + j72)im » (20)
or written in matrix-form:
l’i’ —a|E +B[?m=] (21)
A I A R
Where
0 -1
a=al} 7] (22
B=—T[7‘ _72] . (23)
Y2 N

If we look into Eq.(20), we can find that this equation
has an integration-like structure. If the magnetizing
current i, remains nonzero, the vector R will be
forced to change until i,, converges to zero. In order
to implement the adaptation on a microprocessor,
the algorithm must be transformed to discrete form.
Setting the sampling period to T}, we obtain:

[ Bxn+1) } _ A, [ Ry(n) ]+Bd [ im. (n)

Ry(n+1) R,(n) i (n)
(24)
where:
= Yy (T.Q) —si .0
a2 0]
By=A"1 (EAT__ [ (1) 2 DB
L —& (26)
=”T.T’[€2 & ] ’
with the parameters:
&= T:Q (m sin(TL02) 2 [1—cos(T,Q)]) T.0-0 "
(27
f2= I_:_ﬁ(‘)’z sin(T,2)+71[1—cos(T:R)]) rgo
(28)

which approximate to -y; and <, while T,Q is very
small. With Eq.(4)(13) we obtain the compensation
signal:

—~

R

= ried (29)

Tso
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and its corresponding matrix-form:

[in )= 7vean [ e )| B
(30)

For the implementation of this adaptation algorithm,
we need following parameters:

m, ks, ki, : are the known bearing parameters;

fp, ky, ¢, are set by controller design;
bm: is the control input(cutput of controller);

Q: is the rotational speed, it may be obtained using
a tachometer.

Only one of the above parameters: the rotational
speed ) is not always available since in some special
applications it is not possible to use a conventional
rotational sensor. In order to solve this problem, we
will introduce a rotational speed self-sensing tech-
nique in the next section.

ESTIMATION OF ROTATIONAL
SPEED

In fact the vibrations due to unbalance contain the
direct synchronous rotational speed signal, it is there-
for not reasonable using an extra rotational sensor to
measure the rotational speed. Thus a resolver-like
evaluation of rotational speed is proposed to serve
as the necessary synchronous rotational speed sig-
nal. Not like in {4], the rotational speed is directly
evaluated from the unbalance driven compensation
signal. Thus it enables a higher dynamics of rota-
tional motion.

It seems to be paradoxical to estimate the speed
of rotation from the compensation signal. Since from
the adaptation algorithm in the last section we need
the speed of rotation at first to set the necessary pa-
rameters, then we can obtain the compensation sig-
nal. However if we look into Eq.(20), we can see that
R (and therefore also the compensation signal r,o)
are driven by i,,. As long as a synchronous distur-
bance exists {either eccentricity of sensor ring or ro-
tor unbalance), the vector iy, will rotate with the ro-
tor’s rotational speed. Because the system is linear,
it is expected that r,, also rotates with the same
rotational frequency. Even the magnetizing current
im is eliminated by applying compensation, the vec-
tor ry, must rotate with the real rotational speed,
otherwise i,, will increase again. So it is clear that
the compensation signal r,, always contains the in-
formation of rotational speed. It is therefore possible
to calculate the speed of rotation from this signal; an
eccentricity in system due to manufacturing is from

this point of view not only a disturbance, it is also
an useful rotational sensor.

It is also clear that this self-sensing technique for
the speed of rotation won’t work if no eccentricity
exists on system. Fortunately (or unfortunately?) it
is almost impossible to manufacture a perfect rotor
without any eccentricity. There are two possibilities
to evaluate the speed of rotation from the compen-
sation signal. Namely:

1. Using the Phase-Locked Loop (PLL), which is
wide used in communication techniques, we can
measure the frequency of rotation from the z-
component x,, or from the y-component of rgs.
However a PLL has its own dymamics, it is
therefore not suitable for high dynamic appli-
cations.

2. A resolver-like speed calculation will be given
here, this enables high dynamic estimation for
the rotational speed.

x(n-I}

FIGURE 3: rotational speed evaluation

Figure 3 shows the necessary parameters for the cor-
responding digital implementation. A vector r is ro-
tating with the speed Q, the length of the vector
doesn’t need to be kept constant. From Figure 3 we
obtain the angular difference A# between 2 sample
instants (n} and (n — 1):

an—1 (¥ 1)
]-tan™ [:c(n 1)
(31)

A8 = 8(n)—8(n—1) = tan™? [%%

The speed of rotation is given by:

y(r)z(n — 1) — z(r)y(n — 1)]
z(n)z(n — 1) + y(n)y(n - 1)
(32)

A _ 1.
Q= T T—;-.tan [

Since this evaluation responds almost immediately
to input signals, the estimated speed signal may con-
tain some noise. It is therefore recommended to use
a low-pass filter to cancel the high frequency noise
before using this speed signal. Figure 4 shows the
block diagram of the complete compensation algo-
rithm. The estimated speed signal can not only be
used in the unbalance compensation, it can also be
used in a sensorless rotational speed control.
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FIGURE 4: complete compensation
SIMULATION

A numerical example is given here for the demon-
stration of current-free operation combined with self-
sensing of rotational speed. The rotor is assumed to
be two dimensional with following characteristics:

Rotor:
mass m=10 kg, rotor unbalance with an eccen-
tricity from mass of center |Fwc| = 0.05 mm,

bearing parameters:
k;. =100 N/A, k, = 2000 N/mm,

force-factors:
from P-control fp = 3000 N/mm
from D-control fp = 4.47 N/sec - mm

bearing stiffness:
kr = 1000 N/mm,

damping coefficient:
¢ = fp.

From the above given data we can plot the adap-
tation parameters i, 72 of Eq.(21) and &, & of
Eq.(24) in Figure 5. It is apparently that the pa-
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FIGURE 5: Adaptation parameters vs. speed of
rotation

rameters are not sensible to the variation of rota-
tional speed in the high speed zone. Figure 6 shows
the result of simulation. The current-free operation

is reached within 0.1 sec after the unbalance com-
pensation is enabled. The speed of rotation is also
evaluated within a short time (0.05 sec).

It should also be noted that we take the advan-
tage of permanent magnets to suspend the weight of
the rotor, thus the rotor will be slight shifted up-
ward so that the magnetic force created by PM just
compensates the weight.

G
Mm_w

FIGURE 6: Simulation of unbalance compensation

Until now our derivation is based on an ideal 2D-
rotor model. In oder to apply this to a real rotor, we
can consider a 3D-rotor to be two 2D-rotors, which
are suspended separately on two magnetic bearings
and their masses are distributed by using the rela-
tion myly = maly (Figure 7). As long as the angular
motions of the rotor keep small, the unbalance com-
pensations can be applied on the planes of bearings
separately. This assumption is also validated in the
practical experiments.

FIGURE 7: separate compensations on two mag-
netic bearings

EXPERIMENT
Test Rig

The unbalance compensation with rotational speed
estimation is validated on a test rig, which is set up
with a combined bearing (axial+radial) and a radial
bearing. The rotor weighs 25 kg and its length is 670
mm. A 35 kW induction motor is used to drive the
rotational motion.
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Synchronous Compensation

Figure 8 plots the orbit of sensor-output and current
orbit of one bearing as measured by applying the
synchronous compensation combined with rotational
speed estimation.

comp; off :
“‘%.0‘ G.06 o8 G.1
Sensot x{mm)

FIGURE 8: Turn on the synchronous compensation
at 2 = 10000 U/min

Before the application of compensation the cur-
rent orbit has unusually the shape of a cross. It may
be induced by a manufacturing error on the senor
ring, which is slightly more like a triangular than a
sinusoidal wave. After the compensation is applied,
the current orbit is reduced almost to zero and the
rotational speed is evaluated immediately.

Sensorless Speed Control

The estimated speed signal is not only used by the
adaptation algorithm, it is also used for the sen-
sorless speed control for the induction motor. Fig-
ure 9 shows the experimental results. The motor
drives the rotor following a ramp from -10000 RPM
to 10000 RPM. It is to be noted that the current
orbit is kept almost as a point at the origin during
the whole reversal operation. Since the synchronous
vibration due to eccentricity on the semsor ring is
much more dominating than the rotor unbalance in
the low-speed zone, the speed estimation is therefore
very much influenced by the bad surface quality of
the sensor ring; the speed control works not very well
in this zone.

In spite of the manufacturing errors on the ro-
tor, a current-free operation combined with sensor-
less speed control is implemented through a wide
range of operational speed.

CONCLUSION

An adaptation algorithm is developed to compensate
synchreonous vibrations due to rotor unbalance and
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ool S A 2 4.
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FIGURE 9: Sensorless speed control combined with
synchronous compensation

eccentricity on semsor ring. It is combined with a

- self-sensing mechanism which can detect the speed

of rotation. The results have shown that the pro-
posed algorithm can reduce the synchronous vibra-
tions efficiently for a wide range of operating speed.
The undesired (and unavoidable) manufacturing ec-
centricities on rotor is turned into an useful speed
detector successfully.

The estimated speed signal is also used to control
the rotational speed of the induction motor. How-
ever the sensorless speed control in this work is done
for an operation with relative slow speed variation.
It might be an interesting topic to investigate if this
algorithm is also suitable for a high dynamic electri-
cal drive using vector control.
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