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ABSTRACT

The subject of our study is to develop a new method
that aims at cancelling the effect of the unbalance before
crossing the rigid modes, so that the displacement of the
rotor corresponds to the run-out from a very low speed
through the nominal speed, with a minimal control
current, '
The general two different approaches in order to achieve
unbalance compensation are based on open-loop and
closed loop control. Open loop methods don't have
stability problems in all speed range, particularly when
the rotor goes across the bearing critical speeds. The
problems related to open loop compensation are, on the
one hand, the initialisation of the compensation
algorithm, which can be initiated using an off-line
learning method for influence matrix computation, and,
on the other hand, an adaptive filter which may
introduce spurious disturbances during the speed up of
the rotor.

Our purpose is to use a closed loop compensation
strategy across the whole critical speed range. This
algorithm called AVR (Automatic Vibration Rejection)
uses a very simple model in order to schedule
automatically the synchronous compensation along the
speed range, without any disturbance, even at the first
speed up of rotor, with no initialisation.

Because it is a closed-loop method, its influence on the
stability of the system needs to be studied.

We use a state-space model extracted from a FEM
(finite element method) software in order to get a rough
sensitivity transfer function which will be used for the
tuning of the AVR parameters.

Because AVR algorithm is implemented on a digital
controller, it is now possible to combine the different
unbalance cancellation methods available : according to
the different applications, we show how it is possible to

use vibration cancellation in conjunction with open loop
method in order to allow maximum dynamic stiffness
strategy, or with the well-known ABS (Active
Balancing System) closed loop algorithm, once the
rotational speed is far from critical speeds.

This vibration cancellation method is particularly used
for serial products such as turbo-molecular pumps for
which unbalance cannot be identified for each system.
Moreover, thanks to this method, power electronics can
be optimised and repetitive balancing operation time
can be saved. We finally present experimental results on
an air turbine compressor. :

INTRODUCTION

In the last few years, the number of rotating machines
equipped with Active Magnetic Bearings (AMB) has
been remarkably increasing. Owing to its significant
advantages, such as contact-less levitation, therefore
absence of friction and wear, no need for lubrication and
very high rotational speeds [1]. Furthermore, it goes
hand in hand with adjustment of the damping, system
monitoring and fault detection.

However, AMBs are not as widely spread in industry
applications as these advantages might suggest. An
important reason for this is the significant complexity of
the complete plant in comparison with plants equipped
with conventional bearings. It can be pointed out that
the turbo-molecular vacuum pump is the most
successful application for an AMBs system as a series
production. Furthermore, flywheel energy storage
systems, general purpose gas blower and other turbo
machinery are also interesting application fields for
AMBs.

An important problem that concerns every high speed
rotating machine will be examined here: the unbalance,
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responsible for synchronous vibrations. This gap
between the axis of inertia and the geometric axis of the
rotor is responsible for a great part of the synchronous
vibrations of the system. For AMBs system, active
regulation can be used as a specific active control to
improve unbalance behaviour.

This paper aims at describing a new method for
unbalance control that offers particularly good
behavioural properties when other compensation
methods cannot be used for stability reasons. An
accurate model on which our algorithm is tuned will be
developed first. We apply this algorithm to a model of a
machine in order to validate its limits of stability. .

First, the mathematical model including the rigid and
the flexible part is given. Then, the problem of
unbalance and the methods used to compensate it will
are explained. Lastly, the results obtained on an air
turbine machine are shown.

1 MODEL OF A ROTATING MACHINE ON AMB

Complex rotors are usually modeled by means of Finite
Element Method (FEM) to cope with the non-
elementary shape of the shaft and of the rotating
appendices connected to it. To account for the complex
geometry, the discretization at the base of the FEM
model is usually characterized by a high number of
nodes and, correspondingly, of degrees of freedom. But
modern rotor engineering strongly relies on FE
numerical models before undertaking any actual
construction. In particular, when AMB are concerned, a
model is necessary to design the control law to stabilize
the complete system represented by the shaft and the
AMB:s.

After having built a flexible model for the rotor, we
need to take into account the rigid behavioural part of
the rotor equipped with AMBs. Then we put together
these two halves of the model.

1 — 1 Model of a flexible rotor

A possible output of a FEM software is the frequency
response (Bode diagram) of the shaft, which most of the
time is enough for the enlarged PID controller design.
But this is not enough for time simulations of advanced
control algorithms.

What we need is a polyvalent numerical model, not only
for designing the control laws needed to stabilize the
system but also for simulating anti-vibration algorithms,
making time domain simulations and so on.

The first step consists in building a model for the
flexible rotor that represent the state of each node. Its
size N obvicusly depends on the number of nodes
considered. Let » be the number of nodes, and p the
number of degrees of freedom per node. The typical
values to define the complete geometry of the rotor are

n =50 nodes, and p=4 degrees of freedom per node.
The following equation (1) is the well-known
mechanical equation of the flexible system [2].

MX +(D+QG)X + KX = BF )

M,D,G,K are respectively the mass, damping,
gyroscopic and stiffness matrix. X is the vector
containing the np degrees of freedom. F represents
the electromagnetic forces, and B the nodes where
those forces are applied. Q is the rotational speed.

We also define the output equation (2), where C
corresponds to the nodes we chose to observe.

Y=CX 2)

The main drawback of the model described by the
equations (1) and (2) is its order (usually N =400),
that makes it uneasy or even heavy to use for
calculation. Moreover, such an accuracy concerning all
the nodes is not necessary. The behaviour of the system
for the first flexible modes (up to 3 or 5 kHz) and for a
few number of nodes is sufficient. Only the nodes that
are concerned by actuators and measurements import.

A modal reduction of the system with the modal state
vectors given by the FEM software is used. The so-
called modes are the square roots of the eigenvalues of
the M 'K matrix. Let & be the matrix composed of
the eigenvectors associated to the m flexible modes we
want to observe. A new state vector u of size m as
described in equation (3) is used.

X =du (3)

A matrix of eigenvectors ® is chosen as to obtain
OTMP =1 . Let x be the state vector of the modal
state-space model ;

x= (/‘J )
H

The final state-space model for a flexible rotor is
defined by the following set of equations (5) and (6) :

(T T Tg
z=[ @ (D[+QG)CI> ¢0K¢Jz+[¢0 )F ©

Y={(Co 0)y (6)

The order of this modal state-space model is 2m. We
usually consider the 10 to 15 first flexible modes, so
that the resulting modal model has an order 15 to 20
times lower than the one of the original nodal model.
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1 - 2 Rigid part of the model

A flexible modal model for the rotor is thus obtained.
The rigid part of the system composed of the rotor and
the AMBs has to be added in order to complete the
model. The rigid behavioural model of the system
depends on its geomeiry, the positions of the actuators
and the positions of the detectors [3].

Any movement of a rigid rotor inside its AMBs can be
represented as a combination of a translation movement
and a tilting movement. Consider the system composed
of a bar, two AMBs and the corresponding detectors. In
the sequel, the left and right side of the machine will be
refered to respectively with “1” and “2” in the subscript
notations.

The bearings generate the forces F; and F,. The
displacements of the rotor on the detectors are called x;
and x,, while x is the displacement of the center of
gravity G . & is the angle of rotation of the rotor during
a tilting movement around G . Ly, Lyy, Lay» Ly are
respectively the distances from G to the first and
second bearings, and to the first and second detectors.
Let J be the axial moment of inertia of the rotor, and
M its mass.

The first mechanical equation (7) is related to the
movement of G .
Mi=F +F, )]
The second mechanical equation (8) represents the
movements of rotation around G for small angles & .
Ja=F Ly +F,Ly, (3
With the same hypothesis of small angles, the equations
of observation are given by the set (9).

{xl =x+Lya ©)

x2 =x+Ld2a

Equations (7) to (9) can.be written under a state-space
form, as it appears in equations ¢10) and (11).

x) (0100 0 0 .
d|{x| {60060 M3t MR
=17= + (10)
dt|e| |[0001 0 0 \F
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1 — 3 Final model

The final mode! for the roter equipped with its magnetic
bearings is composed of the sum of two terms : the rigid
part of the magnetically suspended body, and the
expression of the flexible behaviour of the rotor.

Some other terms of the closed-loop are also taken into
account to increase the accuracy of the model. A model
for the amplifiers, anti-aliasing filters, detectors,
smoothing filters, and of course the numerical controller
are then included too. So, this augmented model
represents as accurately as possible the behaviour of the
system.

2 UNBALANCE CONTROL

2 — 1 Unbalance model

For a rotor, the unbalance represents the difference
between the axis of inertia and the geometrical axis
imposed by the bearings. This gap comes from the
imperfections of the rotor balancing.

During the rotation, the unbalance can be observed by
the means of the vibrations it induces on the system.
Cancelling the unbalance effect on the system thus
consists in merging the rotational axis of the bearings
and the axis of inertia of the rotor.

Let m be a mass, placed at a distance d of the axis of
inertia of a rotor with a rotational speed of Q. This
mass creates a centrifugal force:
F = md$2? sin(C¥ + ) (12)
The geometrical unbalance is the md product. If M is
the mass of the rotor, this product can be normalized to
give:

md

I7; (13)

£ =

which is the distance between the axis of inertia and the
geometric axis of the rotor.

In order to understand the unbalance compensation
method, consider a simplified SISO model of the
system, without the gyroscopic effects. G(jw) and
K(jw) respectively stand for the system and the
controller.



Unb=g-sin(Q-t+¢)

u Positi
K(]a)) > G(;a)) | osilion

Figuré 1: Unbalance model

According to what precedes, the unbalance may be
taken into account either as a synchronous disturbance
on the force command signal with speed-dependent
amplitude and phase, or as a synchronous disturbance
on the displacement with a fixed amplitude (geometric
synchronous gap). This second description was chosen
for a compromise of simplicity. The closed-loop system
is shown on figure 1.

Unb = g sin(Qt + ¢) represents the unbalance signal. &
is an external input for the compensation signal, and a
is the measurement used by the control.

2 -2 Unbalance control

The aim is to minimize the oscillations of the control
signal « and conjointly the force due to actuators,
responsible for the vibrations, before crossing the rigid
mode or around its value. If we choose £=Unb, the
compensation is perfectly achieved and unbalance
vibration is no longer present in the control signal =.
To reach such a result, UUnhb has to be identified.
Actually, an unbalance control algorithm called ABS
{Active Balancing System) exists [4], but for stability
reasons, it can operate only when the rotational speed is
about 20% over the frequency of the rigid mode.

Yet, the objective is to eliminate the vibrations due to
unbalance at a speed as low as possible, and above all
under the frequency of the -rigid mode. That’s why a
new method that preserve the stability of the system had
to be designed.

A new patented method has been developed. It is based
on a geometrical interpretation of the system. We
consider the following transfer function:

Unb(jo) _¢$(j@) _ 1
a(jo) a(jo) 1+G(jo)K(jw)

=S(jw)  (14)

This can be expressed under the form of the figure 2,
according to the figure 1.

g

S(p)

Unb

Figure 2 : Diagram equivalent to equation (14)

The sinusoidal signals a, ¢ and Unrb can expressed as
follows, where Q is the rotational speed:

a = A, cos(Qf)+ B, sin(C)¢) (1%
& = Ay cos(C) + 8, sin(LX) (16)
Unb = Ay, c0s(Q21) + By, SIn{QU) an

According to those equations, we can set the following
figure 3 equivalent to the figure 2. The demeodulation
necessary to extract 4, and B, uses the sine and
cosine generators, and the low-pass filters, denoted by
LPF on the figure.

cos(€dr)
Ag = Auny Ly b |,
—» LPF\| 4

3 S@) ta

- B
P @
x : X Lp» l—
B; = Bypy ™ LPF\
1
Sin(Qr)

Figuré 3 : Equivalent diagram using synchronous parts

The whole figure 3 can be seen along with the
compensation feedback loop as described on the figure
4. The matrix M represents a rotation of angle &,
which is the main parameter of the compensation
method.
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Figure 4 : Principle of the AVR unbalance compensatien algorithm

Gg, and P are respectively the amplitude and phase
of the sensibility function measured at the rotational
speed Q, for the frequency @ =Q . The low-pass filter
cuts the harmonics further to this operation. The input of
the compensation algorithm is the measurement @, and
its output is the compensation signal we subtract . We
use a high gain for the low-pass filters because the
atienuation of the synchronous signal due to unbalance
is all the more important since this gain is high.

The angle & is determined thanks to the phase curve of
the sensitivity function. It is meant to compensate the
variation of phase of the sensibility function. We use the
model in order io predetermine the angle.

The ideal compensation is reached when A4, = Ay,
and 5, = By, , but thanks to our closed-loop methed, a
single compensation angle ¢ keeps the system stable in
a large speed range. Using the modeled or measured
sensitivity function it is easy to predetermine the
stability conditions in a given speed range.

Thanks to numerical control, it is possible to combine
different strategies of unbalance control, in order to
extend the vibration control in the whole speed range.
These strategies are based on a roughly predetermined
varying compensation angle, according to the fact that
the phase of the sensitivity function including the
compensation angle should not vary more than 90° in
the whole speed range. Note that when the
compensation angle is zero, the AVR algorithm is
equivalent to the well-known ABS algorithm. Generally
the vibration control on the whole speed range needs at
most 2 or 3 compensation angles, including the nil value
(corresponding to ABS) once the rotational speed is far
from the critical speeds.

Thanks to the compensation convergence as soon as the
rigid body frequencies are reached, it is also possible to
freeze the compensation in order to maintain the
maximum stiffness, even for synchronous forces,
especially in the case of a high speed milling machine
(S2M machine SMB30, 30000 rpms, 70 kW), or to
cross some other critical speeds.

3 APPLICATION

Results obtained on an air turbine compressor are
presented here. In figures 5 and 6, the signals 1, 2, 3
represent respectively the position signal for the right
side, the control signal for the left and right side. The
figure 5 shows an acceleration for which we use only
the classical unbalance compensation method ABS
beyond the rigid mode, at 230 Hz.

Due to the geometry of the rotor the right side is less
balanced than the left side. Before the ABS is activated,
a resonance due to the rigid mode can be noticed. After
the ABS is activated, the contro! signals are minimized,
and the position signal has an amplitude equal to the
run-out {distance between the axis of inertia and the
geometrical axis, see equation 13).
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Figure 5 : Acceleration of a pump with ABS

The figure 6 shows an acceleration with the same
machine, using the compensation algorithm we
developed from 80 Hz to 230 Hz, and the ABS from
230 Hz to the nominal speed. The aim that consisted in
minimizing the synchronous control current (thus the
synchronous vibrations) is achieved.
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Figure 6 : Acceleration with AVR and ABS

The unbalance compensation method has been also
successfully applied to a milling electro-spindle and to a
very important industrial application: the turbo-
molecular pumps used in the semi-conductor industry.
These pumps represent our main series product, and the
algorithm developed allows to save time and money on
the rotors balancing and the power electronics.

4 CONCLUSION

The objective of this study was to develop an extended
method for unbalance compensation of rotating
machines equipped with Active Magnetic Bearings
{AMBs). This algorithm works for any rotational speed,
using a closed-loop method and thus minimizes on the
whole range of speed the synchronous vibrations due to
unbalance.

A model has been used for the tuning of the unbalance
control algorithm. It has been built as a modal state-
space model for a flexible and gyroscopic rotor has been
extracted from a FEM software.

An algorithm for unbalance suppression before the rigid
mode while preserving the stability of the closed-loop
system has been developed and successfully applied,
and generalized, combined with other unbalance control
methods. The tuning of the algorithm relies on the phase
curve of the sensibility function, which can be
predetermined thanks to the model.

This algorithm has been fruitfully implemented on
various applications, particularly on mass-product
application; in the case we have showed the robustness
of this algorithm without any learning phase of
unbalance identification.
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