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ABSTRACT

In order to remove the vibration due to rotor imbalance,
many methods for achieving a clean current that is free
from rotational harmonics have been developed. But a
clean current is known not to give the rotation about the
inertial axis. In the existing methods for rotation about
the inertial axis, apart from a clean current additional
control has to be used and sometimes a variabie rotor
speed is needed, which greatly increases the complexity.
In this paper we give a simple method. We use a typical
clean-current technique plus a local static feedback from
displacement to current. There is no need of a variable
speed. Once the inertial axis is located the compensation
signals can be frozen as a static function of rotor angular
displacement. Then the rotation remains to be about the
inertial axis for any (and also varying) rotational speed.
Experiment results are included.

INTRODUCTION

It is not difficult to make a rotor at such a precision
that it can be viewed as geometrically perfect. But it
usually turns out to have an obvious imbalance, which
causes vibration while it rotates. In applications where
precise rotation about the geometric axis is not critical,
the vibration can be reduced or removed by real-time
control that makes rotation be about the inertial axis.

A popular approach is to maintain a clean current: to
remove the synchronous component from the current by
explicit canceling signal, or to prevent the current from
carrying the synchronous component by controller gain
design. There have been many studies (see [1]-[12], to
name only a few) using various techniques including
notch filters, real-time identification, adaptive control,
disturbance observers, and periodic leaning. However,
with a clean control current the resultant rotation is in
general not about the inertial axis [1][7]. Position of the
rotational axis on rotor is dependent on rotational speed.

The vibration is reduced, not removed. Effectiveness is
guaranteed by large air gap and small bias current 11}
The best solution is to rotate about the inertial axis,

but the control will be much more complicated than to
simply maintain a clean current. In [7], rotatton about
the inertial axis is achieved based on on-line estimation
of rotor imbalance. Another case involves the use of a
double notch filter and adaptive control [12], where a
variable rotational speed is needed for convergence. In
these cases the control is complicated, which poses a
trade-off to the designer: to use the simple clean-cusrent
strategy and tolerate the remaining vibration, or to use
mote advanced control and enjoy complete removal of
vibration. In this paper, we present a new method for
rotation about the inertial axis. It is only slightly more
complicated than clean-current strategy. Thus complete
removal of the vibration will be more attractive.

MODELING AND STABILIZATION

Consider a rigid planar rotor with a radial AMB as
shown in Figure 1, where the X-Y plane is horizontal.
The planar case simplifies the development and allows
attention to be concentrated on the fundamentals. It will
be seen that extension to full AMBs is straightforward.
The coupling between the X and Y axes is omitted and
only one axis is treated whenever possible. The AMB
uses the standard current control configuration. A bias
current is maintained in each electromagnet. For each
motion axis, a control current input is superposed with
opposite signs upon the two bias currents.

When we try 10 let the rotor rotate about the mass
center we should have a model in which the mass center
is explicit. It is popular to view the geometric center as
the basis and to describe the moving mass center by an
imbalance force. Then the mass center is made explicit
by coordinate transform. In this paper, we view the rotor
as having a profile error with respect to its mass center,
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and use the mass center as the basis for writing motion
equations. This is natural and realistic. In fact, the rotor
experiences magnetic forces only. By a torque the rotor
tries to rotate about its mass center. It is essentially the
profile error with respect to the mass center that causes
fluctuations in air gap lengths while rotating, which then
develops fluctuating magnetic forces and vibrations.

FIGURE 1: A planar rotor and AMB.

Suppose the AMB is geometrically perfect and the
origin of the X-Y coordinate is at the bearing center.
Any displacement is relative to this origin. Consider the
motion of the rotor mass in one axis. Let x, be the
displacement of the mass center, then we have

mi, = f 1

where » is rotor mass and f is the magnetic bearing
force in the axis. The first-order approximation of fis
known as a linear function of rotor displacement x and
control current j, which gives

f=px+qi (2)

where p > 0, g > 0 are constant parameters determined
by the AMB geometry and the bias current. Note that x
is the geometric center of the rotor. It is related to x, by

x=x_+w 3)
where w can be viewed as rotor error with respect to x,
and is given by

w=acos 2t+bsinQt = Acos(2t+¢,) @

where g, 5, 4 and @ are constant numbers (g = Acosgy, b
= —Asingy) and (2is rotational speed in rad/s. Finally, let
the control current / be related to x as following (using a
displacement sensor)

i=i ~ke=ClsXr-x)-hx )

where ((s) is a controller for stabilization and dynamic
performance, r is a reference input, k > 0 is a feedback
gain, and . = C(s)(r ~ x) is controller output. It is this -
feedback that simplifies the location of the mass center
(see next section). The relationships (1)<(5) can also be
represented by the block diagram in Figure 2. Note that
when w is moved backward across the double integrator
it becomes the familiar imbalance force, but x, ceases to
be the mass center,

FIGURE 2: Model of rotor error.
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FIGURE 3: Design of compensation,

CONTROL DESIGN

In this section, we give a compensation for removing
the base rotational harmonic from the controller output
i.. Then we show if k = p/g the compensation leads to
the rotation about the mass center. A compensation as
shown in Figure 3 is designed, where square boxes with
a diagonal cross denote multiplication, £ > 0 is constant
and also small such that the stabilization dynamics is
not obviously altered, and F(s) is a filter. This is a SISO
case of the design in [6], but the strategy for stability is
different. Here we use F(s) to maintain correct phase
shift such that the compensation loop is stable. Let G(s)
be the transfer function from r to j, then a property of
stability is stated as following. At a constant rotational
speed (2, if F(s)G(s) does not have poles and zeros at
+j2and its phase shift satisfies

[£F(jo)G(jw)|<nf2, welfa,a2] (6)
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for some g > 1, then, for sufficiently small £, u, and u,
converge to some constant values such that ;. is clean.
The dynamics from i, to r (the compensation part jtself)
is described by a transfer function [6], with which the
claim can be proved [12].

Compared to the approach in [6], where correct phase
shift for convergence at different rotor speed is assured
by switching parameter values in a stored lookup table,
the design in Figure 3 is more easily implemented. The
filter F(s) does not need to be the inverse of G(s). Since
in our method the mass center is located at a single rotor
speed, we only need to find a stable F(s) satisfying (6)
at the speed at which the mass center is located.

When & = 0 the compensation in Figure 3 is just for
clean-current, and in steady-state we have ;= j = 0. The
mass center x, is not identically zero, which is caused by
w and the magnetic stiffness p. Our simple method is to
cancel the effect of p by letting k be equal to an estimate
of plg. Note that to estimate this ratio is easier than to
estimate cither p or g. If k is exactly equal to p/g and i, =
0, then it follows from (1)-(3) and (5) that

mi, = p(x, +wy+ (i, —kx)=gi, =0 7

As the stabilizing controller C(s) is present, the steady-
state value of x, is zero and rotation will be about the
mass center. Besides, with k = p/g, i = 0 is achieved by
a unique and rotating-speed-independent compensation
signal r = w. Thus the location of the mass center can be
identified from the converged values of u, and u,.

As we cannot expect  to be exactly equal to p/g, we
discuss this case in more detail. Let p — gk = h # 0.
Then, upon the establishment of i, = 0, x, is given by

-h
=—" _ dcos(£2 ®
X =T h (2t + @,)

Note that the amplitude of x, is the error in locating the
mass center. If we use the clean-current strategy (k = 0),
upon the establishment of i, = 0 we should have

- P

Yo S il + p Acos(£2t+¢,) ®

Let A, and 4, be the amplitude of x_ given by (8) and
(9), respectively. It is meaningful to compare A, and 4.
Their ratio is

A _ Hm2 +p) (10)
4, plm@* +h)

It is seen that unless k is exactly equal to p/q there will
be little difference between 4, and 4 when £2 is small.

For typical AMBs, p is on the order of 10° N/m and  is
on the order of 1 kg, while 4 can easily be on the order
of 10* N/m (k/p = 0.1). With these data, 4,/4, is found
to be close to A/p when (2 is on the order of 10° rpm.
This is to say that the advantage of the given method
over the plain clean-current strategy can be obvious at a
moderate rotational speed even if the exact value of £ is
not available. Note that in both (8) and (9) the amplitude
of x, approaches zero at increasing (2, but the amplitude
of acceleration d’/dF does not. The ratio of maximum
acceleration is also given by (10).

Another problem we should consider is associated
with a minus value of h, which gives rise to a pair of
zeros at *!_;i(—hlm)”2 in G(s). One choice for avoiding this
problem is to use a value of k that is slightly smaller
than the estimate and to tolerate a small percentage of
vibration force. Another is to start the compensation in
Figure 3 (by switching ¢ from zero to normal) when (2
is beyond the critical speed, which is (60/2m)(—h/m)'*
rpm. From the typical data used above, the critical speed
is 950 rpm, which is not high. After the compensation
has converged, the integrator outputs u, and », can be
frozen by switching £ to zero, by which the problem is
avoided and the rotation remains to be about the mass
center for any (and varying) rotational speed as long as
the cosine and sine functions are synchronized with
rotor angular position.

* Lower layer

" FIGURE 4: Experiment AMB
EXPERIMENT

Experiment Setup

The AMB we use for experiment is exactly.the planar
case we have discussed. The rotor axis is vertical. It is
supported by aerostatic thrust bearings, which also keep
the rotor axis from tilting. Rotor horizontal translational
motion is controlled by a single radial AMB. The AMB
is composed of two identical layers of electromagnets.
In each layer there are four magnets configured as a
standard AMB. Each electromagnet in the upper layer is
connected in series with its lower counterpart, giving
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four independent electromagnets. This two-layer design
is to align both magnetic forces and sensors with the
mass center of the rotor. The sensor and magnet targets
on rotor have a common diameter of 80 mm. The sensor
target has a roundness error of 30 nm, which is obtained
on a Taylor Hobson measurement machine. The rotor
has a disc of 158 identical and equidistant teeth. This
disc is used as an air turbine for rotation. It is also used
to give 158 pulses per revolution (through a sensor and
some electronics), which provides information of rotor
angular displacement. The assembled AMB is shown in
Figure 4. The material in which magnetic flux goes is
Fe-Ni sheet of 0.2-mm thickness. With the geometric
parameters of the AMB and the bias current we use, the
values of p and q are calculated, giving p = 3.5x10° N/m
and g = 23.6 N/A. The rotor mass is m = 3.3 kg. Rotor
displacement in the X and Y axis is measured by two
capacitive sensors (product of ADE, Model 5502 probe,
250 pm range, rms noise 2.7 nm, 20 kHz bandwidth).
Four linear amplifiers are used, which are reshaped by
local current loops of 2500 Hz bandwidth. Control is
implemented on a dSPACE DS1103 board. It has CPU
and supports multitasking. The sample rate we use is 10
kHz. For each sample, four repeated data (each takes 5
48, including a 16-bit A/D conversion) of sensor output
are taken, and the average is used as sensor output.

Angular Displacement Signal

The signal of 158 digital pulses per revolution triggers a
subroutine. The subroutine maintains an integer output
@ that is increased by one each time it is triggered. The
signal ¢ is then smoothed as follows to give an angular
displacement o of the rotor

35+ ¢ 27d(s)

(11)
& +3es +3cis+ 158

p(s)=

Note that there is no steady-state error in @ at constant
rotor speed. With this smoothed p the cosine and sine
functions in Figure 3 can be computed meaningfully at
each sample instant as cosg and sing. The value of ¢ we
use is 2mx10.

Controller and Parameters

In designing C(s) we let k = 0. Later & will be identified
and the feedback will be effective, which can be verified
to have little influence on the stabilizing loop. C(s) is

s+ Bs+B,

Cls) = Bis +Bs+ By 3 B 2 (12)
s+ As

The parameters are determined by pole placement. The

four closed-locp poles are all placed at g, = —21%x200.

With plant parameter values, the controller parameters
are calculated, yielding B, = 1.34x10°, B, = 1.18x10°,
By = 3.49x10", and 4, = 5.03x10°. The closed-loop
transfer function G(s) from r to ; is found to be

13

_is) _ (ms® — p)(B,s* + B,s + B,)
Gls)= rs) m(s—m,)* '

It can be checked by the parameter values that for the
rotational frequencies up to 100 Hz the phase shift of
G(s) is close to & radians, This is true even if k = plg.
Thus F(s) = —1 guarantees the satisfaction of (6) when
£2is not high and when £ is either zero or equal to p/q.
For ¢ we choose the absolute value of the inverse of the
DC gain of G(s), thus s= mq.‘lpBo =6.7x1075.

02 .

LA

-0.2
-02 -0.1 Q.0 0.1 0.2

X-axis [um]
FIGURE 5: Vibration when no compensation applied.

Test without Compensation

The X and Y axes are controlled independently using
two identical C(s). The rotor is stabilized by C(s). With
r = 0 (no compensation) the rotor is rotated and the X-Y
plot of sensor output is shown in Figure 5. The vibration
is believed to be caused by rotor imbalance, It is noted
that all the data shown are down-sampled by a factor of
10, giving a data sample rate of 1000 Hz.

Test of Clean-Current Strategy

In this case the local feedback is disabled by letting &k =
0. Stability of the compensation loop can be tested by
observing its transient. At a constant speed of 1000 rpm
and with initial values of », = u, =0, gis switched from
zero to normal, which gives rise to a transient in Figure
6. It takes about 10 seconds for the transient to become
negligible. Figure 7 shows the steady-state X-Y plot of
sensor output. Note that rotational center is dependent
on rotational speed. Thus rotation about the mass center
is not achieved by the clean-current strategy.
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FIGURE 6: Transient of compensation loop.
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FIGURE 7: Steady-state X-Y plot with clean current.

Rotation about the Mass Center

With £ = 0 the value of p/q is identified by letting r = r,
= 420 pm and then r = 7, = —20 pm, and finding the
steady-state values of current ;, and i,. As in steady state
the force fin (2) must be zero, —(i, — i)/(r, — r,) gives
an estimate of p/q. We obtain the values of 1.3929x10*

(X) and 1.3704x10° (Y). Note that by the calculated p
and g we have plg = 3.5x10%23.6 = 1.48x10%.

With k set to the estimates of p/g, the compensation
loop is also stable, but it has a longer transient than the
case of k=0, because the local feedback alters the plant.
Figure 8 shows the steady-state X-Y sensor output. Note
that the amplitude is now not so strongly dependent on
rotor speed. It is believed that at 1500 rpm the rotational
center is close to the mass center, as checked below.
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FIGURE 8: X-Y sensor output and its amplitude.

At 1500 rpm we switch ¢ to zero. At this moment the
error signal ¢ (see Figure 3 for meaning of ¢} must be
free from the base harmonic. If we ignore the noise and
higher harmonics we should have ¢ = 0 and r = x, so the
local feedback kx can be replaced by a feedforward term
kr and (5) becomes

i=i,—kr=C(s)r-x)-kr (14)

Now the compensation is rendered open loop (since £=
0), while ¢ remains to be identically zero. The signal » is
a function of only rotor angular position and defines a



rotational center about which the rotor is now rotating.
Then we reduce the rotor speed. If the rotational center
defined by 7 is not close to the mass center, we must
expect to observe in ¢ occurrences of vibrations as in
Figure 5. The error ¢ is plotted in Figure 9. Compared
with Figure 5, in which case » = 0 and rotation is about
the geometric center, we see that the rotational center
here as defined by » must be much closer to the mass
center than the geometric center is.
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FIGURE 9: Error signal ¢ at open-loop compensation.

CONCLUSIONS

Based on a planar rotor with a radial AMB, we have
presented a simple method for removal of the vibration
caused by rotor imbalance. Compared with the clean-
current strategy, the given method is only slightly more
complicated. It only additionally requires a local static
feedback and the match of the feedback gain with the
ratio of two plant parameters. As shown in experiment,
this ratio is easily identified to such an accuracy that the
local feedback gives significant improvement over plain
clean-current strategy. The local feedback may give rise
to a pair of zeros on the imaginary axis in the dynamics
of the stabilizing loop, which prevents the compensation
from working. This problem is easily avoided. What is
more, this problem can be completely avoided after the
mass center is located, since after that the compensation
loop can be switched open, while rotation continues to
be about the mass center for any rotational speed.
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