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ABSTRACT

One of the main challenges in magnetic levitation of
flexible structures is the multitude of lightly-damped
modes. These modes make it difficult to design a
controller which is robustly stable. To address this
problem we have developed spatial filtering meth-
ods for the magnetic suspension of flexible struc-
tures. Some approaches to this have been presented
previously {1]. In the present works, we introduce
the idea of combining spatially-filtered control loops
which operate in parallel on force/position and mo-
ment/slope pairs. In the force/position control loop,
by taking the averaged output of a sensor array
and/or applying an averaged force to an actuator
array, “cosine” spatial filters can be created to ef-
fectively attenuate undesired resonance modes with-
out adversely affecting the phase of other modes
and thus the suspension stiffness will be greatly en-
hanced. Similarly, in the moment/slope control loop,
by taking the difference of the outputs of the posi-
tion sensor array and/or by applying differential ac-
tuating forces to the actuator array, “sinc” spatial
filters can be created which change the backbone of
the moment/angle dynamics from -20db/decade to
-40db/decade, but also to smooth out undesired res-
onance peaks. ‘

All these spatial filtering effects are analyzed by
modal analysis and it is shown that the resulting
modal gains are independent of the specific bound-
ary conditions as well as the sensor/actuator set po-
sitions relative to the work piece. In this sense, our
spatial filtering methods are robust for continua lev-
itation and are thus applicable to a wide range of
structural control problems. '

In this paper, we present the spatial filtering tech-
nique applied to beams. In support of this work, as
reported earlier [1], we have constructed a magnetic
suspension test bed to control the flexible modes of
a 3 m long, 6.35 mm diameter steel tube. The ex-
perimental results confirm the value of the averaging
techniques, and suggest the wide future application
of these ideas in industrial processes which may re-
quire non-contact levitating continua.

This work is supported by the National Science Foundation
under Grant DMI-8700973.

INTRODUCTION

Levitation of continuum structures may be required
in the future in industrial operations, such as steel
rolling, plastic film production, paper production,
coating, and painting. Non-contact handling by
magnetic or electrostatic suspension can be advan-
tageous for these manufacturing processes [2](3]{4].
For example, Dr. Conrad Smith [5] developed an
idea for the production of painted metal handles for
brooms and mops as shown in Fig. 1. The process-
ing steps include forming and seam-welding, powder
coating, induction heating, curing, water quenching,
and cutting coated tubes into segments. In the sec-
tions between the powder coat and the water bath,
the 47 m long tube is supported by magnetic sus-
pensions. There are 10 suspension stations, with
a spacing of 3 to 4 m between stations. Here the
long thin tube results in a rich set of flexible modes.
Even in conventional magnetic bearings, when the
interested bandwidth is increased to achieve higher
performance, flexible modes of the structures will be
encountered [6], so the levitated objects are modelled
more properly as continua than as lumped-parameter
rigid bodies.

The goal of our research is to investigate the vibra-
tion control of such levitated continua. In the levi-
tated flexible continua, high resonance peaks will ap-
pear, usually with very small damping. These peaks
become denser and denser on a logarithmic plot as
frequency increases, because the number of resonat-
ing modes increase linearly with frequency. There
will thus be regions of multiple 0dB crossover by the
control loop transmission magnitude. Therefore, a
broad range of the frequency response will affect the
stability of the closed loop system. A lot of efforts
have been made in this area. Temporal notch fil-
ters are effective in attenuating the resonance peaks
at a specified location, but they are very sensitive
to parameter uncertainties {7]. The modal control
method [8] extracts modal coordinates and applies
modal forces to the vibration modes to be controlled.
But the modal control method is model-based and
requires the knowledge of the modal shapes, and is
thus sensitive to modelling errors.

This research investigates a spatial filtering
method. By placing the sensors and actuators in
an array, desired spatial filters can be implemented.
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Fig. 1. Non-contact coating process for broom handies, as developed by Smith [4].

These spatial filters will smooth ocut the bigh fre-
quency resonating modes without adversely affect-
ing the phase of the low frequency range. Moreover,
the benefits from this spatial filtering technique can
be easily integrated with other temporal controller
design methods(lead-lag, etc).

In an earlier publication (1], an spatial filtering has
been demonstrated in the position/force control of
levitated continua. While position/force constraints
are only one half of the possible degree of freedom, we
need to feedback control of both the transverse po-
sition and the rotation angle to better constrain the
flexible structure. As the backbone of the Bode plot
from moment input to slope output is -20db/decade
and the phase is very near to —180°, it is much more
difficult to increase the rotation stiffness than to in-
crease the position stiffness. This paper presents the
spatial filtering methods on both force/position and
moment/rotation control with more emphasis on the
latter.

BEAM MODEL

This section introduces the beam dynamics via
modal analysis [9]. The beam without tensional force
is represented by the Euler-Bernoulli beam equation

du 0u
EI@ + pAb—t-é- = f, (1)

where EI is the bending stiffness, u is the transverse
deformation, z is the axial dimension, pA is the mass
per unit length, and f is the external transverse force
density. The beam vibration is first represented by

u(z,t) = 3 &t)ga(2). (2)
n=1
Similarly, we represent transverse rotation 6(z,t) by
d
0(z,t) = b—zu(z,t)
— d
= L O 3)

Here £ () is the n-th modal coordinate, and ¢n(2) is
the n-th modal shape of beam transverse vibration:

n(z} = (Cnicosknz+ Coasink, z +

Cnacoshkyz + Cpgsinhk,z).  (4)

The wave number k, and the modal frequency wy,
are related through the associated beam dispersion
equation

_ af pALZ
kn = B (5)

The constants- C,;; are determined from boundary
conditions. For magnetic suspension of such slender
structures, the main control problem is associated
with the high-frequency modes. As the evanescent
waveforms near the boundaries are less important for
these high frequencies, we assume the beam vibration
is dominated by the sinusoidal terms and the beam
vibration is thus approximated by

u(z,t) = Y £a(t)(Cnicosknz + Crasink, 2){6)
n=1

From the orthogonality properties of each mode,
the partial differential equation (1) can be decoupled
into infinite number of ordinary differential equations

(9}

My (€n + 2nwnn + w3En) = Ny, n=1, 2, ---00. (7)

where nth modal mass M,, and nth modal force N,
are defined by:

L
M, = f pAgLdz, ®)
0

L
Ny = f Fndz. (9)
0
For a concentrated force F(t) at z,, f = F(£)6(z—

2a), where 6 is the unit impulse, and thus the modal
force can be reformulated as:

L
Na(t) = [o F($)6(z — 2a)bn(2)dz = F(£)gn(za). (10)
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For a beam position sensor with output y located at
Zgy

y(t) = u(ze,t) an (t)¢n(2s). (11)

From equations (7) (10) and (11), the transfer func-

tion.from a concentrated point force F at z, to a g

position feedback y at 2, can be derived:

y(s) Pn(2s)Pn(2a)
F(s) Z Mn (82 4+ 2€awns +w2)’ (12_)

Similarly, for a concentrated moment T'(Z) at
Zg, the force density can be formulated as: f =
~T(t)u1(z — 2z,), where u;(2) is unit doublet func-
tion, and thus via integration by parts,

L
Na(t) = /0 ~T()us (2 — za)dn(2)d2
—TOfbalza) (19

The beam slope at z; is given by,

0(0) = Y &n(t) - dn(z0) (19

n=1

Thus the transfer function from a concentrated mo-
ment T at position z, to a slope feedback 6 at posi-
tion z, is:

0{s) o 3;¢n(zs) qu,.(za)
T(s) Z My(s? + 2C:wns +wl)’ (19

For our experimental 3 m long tubular beam, Fig. 2
illustrates the calculated Bode plots of the two trans-
fer functions (12) and (15) with 2, = z, = 1m and
with 2z, = z; = 1.3m under free-free boundary con-
ditions.

To design controllers to stabilize the beam, we are
more concerned with the peak envelope of the Bode
plots labelled as the uncertainty envelope in Fig,. 2.
When the suspended object is moving, thereby shift-
ing the points of force application and sensor feed-
back relative to the mode structure, the Bode plots
will change greatly as shown in Fig. 2, while the un-
certainty envelope will remain the same. With as-
sumed sinusoidal mode shapes ¢, (z) = sin(knz+@,),
we show that get M,, = pAL/2, where L is the total
length of the beam. For each mode, the amplitude
of the Bode plot,

¢n(z.s)¢n(za) < 1
Mn((jw)2 +2ann(j‘~'} +w121) - 2Mn§nw1?z
1
A

10°
¢

1
Frequency (rad/s}
(a) Bode plot of transfer function from collocaled force to position
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Fig. 2. Bode plots of transfer function % V8 %.

At each natural frequency, we assume that the cor-
responding resonance mode dominate and ignore the
response from other modes; and if we assume the
same { for each mode, then the peak envelope for
the position control is:

1
= pAL{w?’

y(jw)
F(jw)

(17)

Similarly, the peak envelope of the transfer function
for moment control can be derived as:
(jw) < k2

T(jw)| ~ pAL{w?".

(18)

Replacing the wave number k by frequency w via (5)
gives,

'B(ju) < 1 (19)

TGw)| = VpAEIL{w'

Comparing (17) and (19), the slope of the uncer-
tainty envelope for moment control is -20dB/decade,
while that of the position control is -40dB/decade
as plotted in Fig. 2. So the moemnt/slope control
is more challenging than the force/position control
in [1] because the high frequency modes carry more
amplitude and thus are harder to attenuate below
0dB.
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FORCE/POSITION CONTROL (a) Modal gain cos(knd) as a function of wavenumber kn
To control the position, we applied the averaging 1 T '
method of [1] to both sensors and actuators. As
shown in Fig. 3, the average of two sensors’ mea-
sensor averaging
£
sensor
- eam (b) Modal gain cos(knd) as a function of rasonance frequency 0y,
7> 0 T
ld | da | | S LT ,"\"d ot
zZ 2 2 § | 1o i I P
|
Fig. 3. Sensor positioning arrangement in 2-sensor averaging. o -
surements is used to represent a single point’s dis- 0
placement. The averaged output @(2,,1) is given by 200 by 180° —
) 1 L. . : !. =
y(za’t)‘ = E(u(zlat) +1.L(22,t)) QO e e e, ]
Hesonance modau are in phase, whdnmeam

= 53 &®bala) + dul)). (20)

n=1l

The averaged output of n-th mode is

28a(21) + Bn(22)] = 5[Cus(coknz1 + coskazz)
+Cra(sinkn 2, + sink,22)]
= (Cp1c08kn 2, + Cnasink, 2, )cosk,,d

= ¢Pn(2,)cosknd, (21)

where d = 20— 29 = 2o — 21. After pla.ciﬁg this result
into (20), the averaged output is

[ =]
W(20,8) = Y En(t)Pn(20)coSknd.
n=1
By averaging, a modal band-stop filter is created,
where each mode has a gain of cosk,d. Fig. 4 shows
the filter gain as function of wave number and fre-
quency.

Actuator averaging is the dual to sensor averag-
ing. As shown in Fig. 5, the simplest form of actua-
tor averaging uses two actuators with the same force
applied to each actuator. The resulting filtering ef-
fect is quite similar to sensor averaging. This idea
can be understood via the concepts of modal force
as described below. The averaged nth modal force
N, is given by

L
[o F(@)bn(2)dz

(22)

N, =

L
[ 570602 +66 - ) onaes

- % FE)(@nl21) + dal(22))

= F(t)¢n(20)cosknd. (23)

‘Resonance frequency W (rad/s)
Fig. 4. 2-Sensor averaging for beams: modal gain cosk,d

plotted as (a) a function of ky, and (b) a function of wy,.

T d Zlo d le actuator
i I peam

\? , ?"_2"
actuator averaging

Fig. 5. Actuator positioning arrangement in 2-actuator aver-
aging.

Here f(t)¢n(2o) is the modal force associated with
one actuator with force f(t) concentrated at z = z,.
The averaged modal force has a gain of coskpd just
like the sensor averaging method.

With both sensor averaging and actuator averag-
ing discussed above, the transfer function in one sen-
sor/actuator set for force/position control becomes:

i(s) i #3(2o) cos?knd.  (24)
f(s) “ Mn(sﬁ + 2(nwns + w?) e
The resulting uncertainty envelope becomes:
§Gw) | cos?kad
2 , 25
F(jw)| ~ pALLW? (%)
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which introduces a notch into the function (17) (a) Modal gain sinc{knd) as a function of wavenumber kn
1 v v r v v r
MOMENT/SLOPE CONTROL (o) ] S Slﬂc(knd)s ....... ....... ....... ...... 4
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Fig. 6. Sensor positioning arrangement for moment/slope o :
control.
40 i
sition sensor outputs is used to represent the rotation 200 v
at the center point, and is given by o b F).ut’;;fi gggS_g_ =
a 1 ] :
B(zo,t) = —-—(u(zg,t)—u(zl,t)) %100 ce
é ............. Ha rm-f.nom.am In hssav D : -y
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The scaled defiection difference for the n-th mode is

1 1
5 9n(z2) ~ Pn(21)] = Q[Cnl(COSknzz — coskn21)
+Chna(sinkn 2y — sinkp21)]
7:( Crisink, zo + Cngcosknz,,)smk d
smk d

= E£¢n (zo)sinc(kﬂd) (27

After placing this result into (26), the averaged slope
output is
6(zo,

H=3 En(t)g;fpn(zo)sinc(knd). (28)

n=1

By comparison with (3), we see that a modal band-
stop filter is created again, where each mode is scaled
by a gain of sinc(k,d). Fig. 7 shows the filter gain as
functions of wave number and frequency.

To demonstrate this “sinc” effect on the beam
structure dynamics, the transfer function from an
actuating moment T(t) concentrated at zg to the av-
eraging slope output 8(t) (= = (u(z,t) — u(z1,1)))
centered on 2 can be written by modal analysis as:

g(s_) ‘%_¢n(zo)(%¢n(zo)
T(s) My (82 + 2(wns + w3)

= =]

-

-s'mc(knd)) -(29)

Resonance fraguency My (rad/s)

Fig. 7. 2-Sensor slope averaging for beam moment control:
modal gain sinc(knd) plotted as (a) a function of kn, and
(b) a function of wp.

Compared with equation (15), the modal gain
sinc(k,d) in equation (29) attenuates the resonance
modes over a broad range of frequencies without ad-
versely affecting the phase. The Bode plot of this
transfer function is shown in Fig. 8 for a free-free
beam of length L = 3 m, sensor location zp = 1 m
and spacing d = 0.30m.

The result (29) shows that spatial filter method for
sensing slope yields a non-model-based modal-band-
stop filter with the following properties:

1. It is independent of sensor pair location z,.

2. It is independent of boundary conditions.
When boundary conditions change, the natural
frequencies associated with k, change. That is,
in Fig. 7, the curve remains the same, although
the modes (shown as crosses) move along the
curve.

Similar to the dual relation between sensor averag-
ing and actuator averaging in force/position control,
moment actuator averaging is the dual to slope sen-
sor averaging. As shown in Fig. 9, the same forces
but opposite direction are applied to each actuator.
The nth modal force N, associated with the differ-
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Bode Plots of beam dynamics with slope sensor averaglng

control becomes:

25 0n(20))°
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Fig. 8. Theoretical transfer function of beam model for slope

sensor averagi.ng. Solid line shows results with slope sen-

sor averaging (d = 30 cm). Dashed line shows the transfer

function from moment to collocated direct slope output

for comparison. Note that a broad range of resonance
Zy

modes are attenuated.
I d le actuator
lmi /baam
M_Z'»

s

29
d
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1
1
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4 actuator averaging ?(t)

Fig. 9. Actuator positicning arrangement for moment/slope
control.

ential force pair is given by

I,
N, / F()ba(2)dz

L
/ oo T8z = 22) -
0

6(2 - Z])) : ¢"(2)d2

= 2(0)35($alz2) — dula), (30)
Plugging equation (27) into (30), we get
N, = f‘(t)g;gbn(z,,)sinc(knd). (31)

Compared with equation (13), T(t)f;gbn(zo) is the
modal force associated with one moment actuator
with moment T'(t) concentrated at z = z,.

With both slope sensor averaging and moment ac-
tuator averaging discussed above, the transfer func-
tion in one sensor/actuator set for moment/slope

8(3
-2
The associated peak envelope becomes:

8(jw)
T(jw)

M, (3% + 2(pwns + w2)

kz

(smk nd
= pAL(w?

)2 (33)

Fig. 10 shows the “sinc” effect on the Bode plots
of the beam for moment/slope control. The “sinc”

sinc?(knd). (32) -

Bode plot of beamn dynamlcs for moment oormoi

(-]

8

g

. Phase (deg)

g

10° 10' 10°

Fig. 10. Theoretical beam model with combination of sen-
sor averaging and actuator averaging for moment control
with d = 0.30m. The dotted line marked as -20dB/decade
is the envelope without averaging. The dashed line is the
envelope with sensor and actuator averaging. Note that
the phase stays collocated above the notch as the result
of the same spacing in sensor and actuator.

functions not only change the peak envelope for mo-
ment control from -20dB/decade to -40dB/decade,
but also bring non-modal-based notches to the Bode
plot. These effects will help us to increase the mo-
ment control bandwidth, and thereby stiffness signif-
icantly in the controller design.

CONTROLLER DESIGN

The challenges of controlling levitated flexible struc-

tures result from the following:

1. A levitated structure typically has a low damp-
ing ratio ¢, and the modes thus can have high
peaks in the transfer function. In our experi-
ment, we measure { =~ (0.001 for free-free bound-
aries. This means that a very broad range of
modes have an impact on loop stability.

. Because of the sensor dynamics; actuator dy-
namics and computational and sampling time
delay, the control systems usually have signifi-
cant phase lag within the desired bandwidth.
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3. As the suspended object is floating in the air, it
will move axially relative to the actuator/sensor
sets. As shown in Fig 2, the change in the actua-
tor/sensor positions relative to the structure will
influence the amplitudes of the resonance peaks
greatly, and bring uncertainty to the controlled
plant. As the magnetic suspension is applied
to manufacturing processes, the boundary con-
ditions will change significantly when the work-
ing piece is being cut or formed. The change in
boundary conditions will move the natural fre-
quencies and will bring further uncertainty to
the plant.

4. Besides the robustness of the controller, we also
want good performance of the magnetic suspen-
sion. We thus need high stiffness and damping
to the magnetic bearing.

Taking advantage of the spatial filtering meth-
ods discussed above, we present a controller design
method by loop compensation for the single mo-
ment,/slope control first. Then, we extend it to the
case where the levitated continua is controlled by
both force/position and moment/slope sets.

Moment/Slope Loop Controller Design

Figure 11 shows the modelled plant dynamics from
moment actuator and slope sensor with varied
boundary conditions, including dynamics of the

Bode plot of beam dynamics for moment control

-300 ¢ 1 2 IS
0 10 10 10
Frequency (rad/s}
Fig. 11. Bode plots of open-loop dynamics, from collocated

moment input command to a single slope sensor output
voltage, including dynamics of beam, sensor, actuator
and time delay, assuming damping ratio { = 0.005

beam, actuator, sensor, and time delay (computa-
tional time of one sample and a half sampling time
due to ZOH, the assumed sampling rate is 4kHz).
This plant assumes a collocated slope sensor and mo-
ment actuator at 2p = 1 m, for the experimental 3 m
long beam. From the figure, it can be observed that
the natural frequencies may change greatly with the
boundary conditions.

In order to add positive phase to the modes over
a broad frequency range, a multiple-lead slow-rolling
compensator [1] is used to provide a phase margin of
about 30 degrees for the frequencies of interest with
an averaging gain slope of +1/2 in order to avoid
over-amplifying resonance peaks at high frequencies.
Nevertheless, the total phase of the loop transmis-
sion will fall below —180° in the frequency range
higher than a certain critical frequency w,, because
the phase lag resulting from the actuator, sensor dy-
namics and computation and sampling time delays
will be beyond the capability of lead compensators.
At the frequency range w 2 w. where we cannot
guarantee the phase greater than —180°, we need
to attenuate the amplitude of the Bode plot of the
loop transmission by the actuator averaging and sen-
sor averaging methods discussed above so as to gain
stability of the loop. The uncertainty envelope will
be significantly attenuated by putting the averaging
notch slightly less than the critical phase frequency
w,. We adjust the controller gain to keep the peak
envelope below -3dB at frequencies higher than the
notching frequency wy and thereby assure stability.
Fig. 12 shows the moment/slope compensation re-
sults with such spatial filters; the robust stability is

Robust Moment Controller Design

e
~ -
-

Gain(dB)

Phase (deg)

10°
Frequency (rad/s)

Fig. 12. Bode plots of loop transmission of moment control
with spatial filiering metheds. The dashed lines shows
the magnitude envelope and phase envelope of the loop
transmission.

easily verified because we compensate the loop based
on the uncertainty envelope.

MIMO Combinational Control of
Moment/Slope and Force Position

For the beam suspended by multiple sensor/actuator
sets with both position and slope control, there will
be strong interaction between the position control
loops and slope control loops. The MIMO loop com-
pensation of such a system is illustrated in Fig. 13.
Here, we set the spacings in the slope control sets
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Fig. 13. Bode plots of loop transmission for rotation control
and position control with averaging methods. The dashed

lines shows the magnitude envelope and phase envelope
of the loop transmission.

at two times that in the position control sets, so
that all sets have the same notching frequency wy =
700rad/sec, which is slightly smaller than the crit-
ical phase frequency w, = 900rad/sec. The posi-
tion controller and the slope controller have the same
structure, e.g. the same poles and the zeros, as those
in SISO moment controller. We adjust the gain of
the controllers such that the loop transmission en-
velopes- of both slope control and position control
are -3dB below 1/n, where n is the total number of
sensor/actuator sets. Within the notching frequency
wa, the phase envelope is always above —180° be-
cause of the lead compensator. The peak envelope
and the phase envelope remains the same regard-
less of the boundary conditions and positions of sen-
sor/actuator sets, thus robust stability is guaranteed.

EXPERIMENTAL RESULTS

In this section, we show experimental results from
our scaled tubular beam magnetic suspension.

Experimental Setup

In our experiment, both sensors and actuators have
12.7 mm bores, their design is discussed in [10],
[11]. The tube is steel, with a mass per unit length
pA = 01190 Kg/m, Young’s Modulus £ = 200
GPa, outside diameter ¢ = 6.35 mm, wall thickness
w = (.89 mm, and length L = 3 m. The experiment
controller is implemented on a digital signal process-
ing (DSP) board with a sampling time of 250 us. To-
tal computational time within this sampling interval
is about 235 ps.

Moment Control of Clamped-clamped Beam
with Spatial Filtering

Ta verify the effectiveness of slope/moment control
with spatial filtering, we use 2 sensors and 2 actua-
tors to implement this experiment. Specifically, the
space between sensors is 0.80 m, the space between
actuators is (.70 m, and the center point of the sen-
sors coincides with that of the actuators. Fig. 14
shows the experimental setup and the measured loop
transfer function. First, we put the set at a relatively
Sensor

\....32“"

Experimental Bode piot

107 T

Frequency (rad/s)
Fig. 14. Experimental setup and measured Bode plots
of loop transfer function for moment control by using

2-actuator averaging and 2-sensor averaging and with
clamped/clamped boundary conditions.

wide spacing d; = 0.40m and d; = 0.35m. The cor-
responding notches are at around 600 rad/s and 800
rad/s. We compensate the loop as in previous sec-
tion. This is a stable result. Next, we put the set at
narrower space d; = (.08 m and d, = 0.15m; the cor-
responding notching frequencies are above 4000rad/s
and have no significant filtering effect in the fre-
quency range of Fig. 14. When closing the loop with
the same controller as above, the plant is unstable
with a loop transmission as shown with the dashed
line in Fig. 14. The closed ioop plant remains unsta-
ble until the controller gain is reduced by a factor of
10. This means that with the spatial filtering effects,
the stiffness (controller gain) can be made larger by
a factor of 10.

MIMO Force/Position and Moment/Slope
Control of Free-free Beam

While the tubular beam is being suspended with free-
free boundaries, the damping ratio of the beam is
measured to be below 0.001. As shown in Fig. 15,
we use three sensor/actuator sets for position con-
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Fig. 15. Experimental setup and Bode plots of moment con-
trol loop transmission at the 2nd point with all loops
closed using both sensor averaging and actuator averag-

ing.

trol at points 1, 2 and 3 and one sensor/actuator set
for slope control at point 2 to suspend the beam.
The mid-point of the rotation set coincides with
that of the second position set. In the position
sets, the spacing between two sensors/actuators are
2d, = 0.355 m and 2d, = 0.275 m, which set the
associated “cosine” filter notches at 775 rad/sec and
1340 rad/sec. In the slope set, the spacing between
the two sensors 2d, = 0.710 m and the spacing be-
tween two actuaters 2d, = 0.610 m, which sets the
associated “sinc” filter notches at 775 rad/sec and
1000 rad/sec. Because of the physical size of our self-
developed sensors and actuator, we can not make the
spacing between two sensors equal to that between
two actuators in one set. The experimental setup
and measured Bode plots of the loop transmission at
the moment/slope control loop with all other loops
closed is shown in Fig. 15. It can be observed that
there are obvious notching effect at 770 rad/sec by
spatial filtering. The phase for the frequency range
below 700 rad/sec is above —180°. Beyond this fre-
quency range, we attenuate the peak envelope of am-
plitude below 0 dB.

CONCLUSIONS

This paper presents the spatial filtering technique for
combined force/position and moment/slope control
of levitated continua. This spatial filtering method
makes use of the relations between resonance fre-

quencies and wavelengths as they depend on struc-
tural properties. By placing sensors and actuators
based on the wavelengths of undesired modes, we
can attenuate these resonance modes to improve the
loop gain. These filtering effects is both mathemati-
cally analyzed and experimentally demonstrated. As
the resulting modal gain is independent both of sen-
sor/actuator set location and of boundary condi-
tions, a robust controller can be designed with the
envelope information to deal with the uncertainty
coming from the changes in position and boundary
conditions. Furthermore, this filtering technique can
be widely extended te vibration control of other flex-
ible structures such as filaments, webs and plates.
The main limitation of our analysis is that we as-
sume sinusoidal modal shapes, and thus neglect the
evanescent waveforms. This assumption is accept-
able when the sensors and actuators are far from the
boundaries of a slender suspended member. The ap-
proximation is especially applicable at high frequen-
cies where the wavelengths are short. The resulting
analytical simplification allows the development of
powerful spatial filtering concepts, which appear to
have wide applicability.
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