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The paper deals with the forces acting between the rotor
and stator of a cage induction motor when the rotor is
performing cylindrical whirling motion. Time-stepping
finite element analysis is used for solving the magnetic
field, and the forces are calculated from the air-gap field
based on the principle of virtual work. The forces are
measured with a test motor equipped with active
magnetic bearings. A simple analytic model is given for
rotor dynamic analysis purposes. This model accurately
predicts the behaviour of the low frequency force
component also in transient situations. Finally, the
effects of the magnetic forces on rotor dynamics are
briefly discussed.
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In magnetic bearing applications, the electric motor is
often large compared with the bearings, and the flux
densities in the motor and bearings are of about the
same magnitude. Therefore, the electric motor may
produce significant disturbance forces and change the
system dynamics. In this paper we study, what kind of
forces there exists, how they can be modelled and taken
into consideration in the rotor dynamic analysis.
This paper focuses on the forces acting on a rotor
performing cylindrical circular whirling motion with
respect to the stator. In this motion, the geometric
centrelines of the rotor and stator are aligned but the
former moves around the later in a circular orbit with a
frequency, called whirling frequency and with a radius,
called whirling radius. The forces are studied as
functions of the whirling frequency and whirling radius.
To simplify the task, we concentrate on the first
harmonic force component, i.e. the force at whirling
frequency.
A whirling, eccentric rotor creates a non-symmetric flux
distribution that causes the forces. The non-ideal field
induces circulating currents in the rotor cage and

parallel branches of the stator winding. These currents
tend to equalise the flux distribution, and by doing this,
they may significantly reduce the radial force in the
direction of the shortest air gap but, simultaneously,
they produce a tangential force.
Conventionally, the forces acting between the rotor and
stator have been calculated by analytic means. The most
complete analytic model for a whirling rotor in
induction machines was developed by Früchtenicht et
al. [1]. Their model takes into account the equalising
currents induced in the rotor cage but neglects the
magnetic saturation of iron and the high-frequency
forces associated with the stator and rotor slotting. They
also considered the equations of motion of the rotor, and
showed that the tangential forces have a significant
effect on the stability of the motion.
Numerical field computation methods for analysing the
effects of eccentric rotors have been available for about
ten years. Arkkio&Lindgren [2] studied the forces in a
high-speed motor using time-stepping finite-element
analysis. They considered static eccentricity, and the
method of analysis was verified by comparing the
measured and computed forces. Some more references
to analytic methods can be found from this paper.
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The magnetic field in the core region and air gap of the
motor is assumed to be two-dimensional. It is solved
using time-stepping, finite-element analysis. The details
of the method have been presented in References [3]
and [2].
The electromagnetic force was computed using the
method presented by Coulomb [4]. The method is based
on the principle of virtual work, and the force is
integrated from the air-gap field. This method was
chosen as it and other methods based on a similar



integration have given good results when computing the
torque of electric machines [3], [5] and the radial force
in active magnetic bearings [6].
The whirling motion was produced by changing the
finite-element mesh in the air gap. The centre point of
the rotor was moved along a circular path at constant
speed. In addition, the rotor was rotated at the
mechanical angular frequency. Second-order, triangular
elements were used. A typical finite element mesh for
the cross section of the motor contained about 10 000
nodes.
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Früchtenicht et al. [1] developed an analytic model for
the circular whirling motion in which they took into
account the effects of the equalising currents in the rotor
cage. Their basic results are briefly summarised below.
The analytic models of induction machines are usually
based on the Fourier decomposition of the magnetic
field in the air-gap of the machine. The flux density is
presented as a sum of harmonic flux-density waves
moving in the air gap either in the positive or negative
direction. An eccentric rotor produces two additional
harmonics in the air gap field. These eccentricity
harmonics are of the form
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where � is the number of pole pairs of the machine, ω1

is the fundamental frequency, ωw is the whirling
frequency and ϕS and ϕw are phase angles. The
eccentricity harmonics interact with the fundamental
harmonic of the machine and generate the largest forces.
The speed of a circulating harmonic wave often differs
from the speed of the rotor. The slips of the rotor with
respect to the two eccentricity harmonics are
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where � is the slip of the rotor with respect to the
fundamental harmonic. If the slip of an eccentricity
harmonic is non-zero, the harmonic induces eddy
currents in the rotor cage. The eddy currents modify the
amplitude and phase of the eccentricity harmonic, and
by doing this they affect the radial force. In general, the
force component in the direction of the shortest air gap
(radial component) is reduced, and a new force
component perpendicular to the direction of the shortest
air gap (tangential component) is generated.
The slips of the two eccentricity harmonics become zero
at whirling frequencies
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The finite element analysis is time consuming, and a
lower order model is needed for rotor dynamic studies.
The model presented by Früchtenicht et al. [1] becomes
compact when a complex rotor dynamic formulation is
used
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where � is rotor displacement, � is force caused by
motor and subscripts X and Y refer to X and Y
directions, respectively. Using this formulation, we can
write the analytic model [1] as
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where � = �ω and �C is a constant complex number. The
frequency response function � can be parameterised as
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The 
 parameters are real valued variables proportional
to the square of the fundamental flux density in the air
gap. The imaginary parts of the poles 	 are the whirling
frequencies at which the slips of the two eccentricity
harmonics become zero (Eq. 3). The real parts of the
poles 	 depend on the dimensions of the machine but not
on flux or loading.
The analytic model was developed for circular whirling
motion. However, the physical background and the
linear spatial behaviour suggest that Eq. (6) can be
interpreted as a transfer function model

( ) ( ) ( )������� CC = (7)

where � is the Laplace variable. This transfer function
model and the corresponding differential equations can
be used to predict the transient response and rotor-
dynamic stability as well. This was verified by
computing transient responses using FEM simulations
and according to Eq. (7). Such a comparison is shown in
Figure 6. The results match very well.
When using Eq. (6), we estimate the parameters from
the results of the time-stepping, finite element analysis.
In this way, we include the effects of core saturation in
the model. The imaginary parts of the poles are forced
to be equal to the whirling frequencies at which the slips
of the two eccentricity harmonics are zero (Eq. 3). In the
parameter fitting, we used real 
 values, according to the
analytic theory. A complex fit gives a little better match,
especially, at whirling frequencies close to the
synchronous frequency. We assume that the imaginary
parts of 
 coefficients are associated with the coupling
between the eccentricity harmonics caused by core



saturation. However, from the point of view of rotor
dynamics, the fitting of real values gives sufficiently
accurate results.
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The test machine is a 15 kW four-pole cage induction
motor. Its main parameters are given in Table 1. The
motor was equipped with magnetic bearings to measure
the forces. Only radial bearings were installed. The
electrical motor acts as an axial bearing. The radial
bearings were ordinary 8-pole hetero polar bearings
with bias current linearisation. Magnetic bearing
operation and the parameters of this particular bearing
type are listed by Lantto [7].

������%. Parameters of the test motor.

Parameter

Number of poles 4
Number of phases 3
Number of parallel paths 1
Outer diameter of the stator core [mm] 235
Core length [mm] 195
Air-gap diameter [mm] 145
Radial air-gap length [mm] 0.45
Number of stator slots 36
Number of rotor slots 34
Skew of rotor slots 0
Mass of the rotor [kg] 30
Connection Delta
Rated voltage [V] 380
Rated frequency [Hz] 50
Rated current [A] 28
Rated power [kW] 15

Using the magnetic bearings, the rotor was forced to
move along a trajectory
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where Ω is rotation frequency, ω is whirling frequency,
�ω is whirling radius (defined as real and positive) and
subscripts 1 and 2 refer to the two rotor ends.
The control system, which was used to achieve this
orbit, is shown in Figure 1. It is a fairly standard
unbalance compensation scheme, except that reference
orbits are not zero and there are two frequencies to deal
with. Suitable coefficients �(Ω) and �(ω) were
determined using methods presented by Lantto [7]. The
control system was realised with a prototype digital
controller built in the Laboratory of Electromechanics.
Because of the mechanical tolerances, the electrical
motor was not perfectly aligned with the magnetic
bearing position sensors neither in the rotor or stator.
This misalignment can be compensated by the first two
terms in Eq. (8). We must determine the parameters

�C10, �C20, �1Ω and �2Ω so that they define a rotor
trajectory, in which the rotor core is concentric with the
stator core. This trajectory was obtained from a
calibration procedure [8], which is sketched in the
following: The rotor was locked to some rotation angle.
A DC-current was fed into the stator winding and the
magnetic bearings were used to measure the static force
caused by this current. By using the magnetic bearings
as force sensors and switching the DC-current on and
off, such a position combination (�C1,�C2) was searched
for in which the electrical motor did not cause any
forces. This procedure was repeated for numerous
rotation angles. The calibration procedure defines the
trajectory along which the rotor should move in the
position sensors to produces a zero force. Fortunately,
and according to the theory, these orbits are circular and
they can be realised according to Eq. (8). Thus when the
trajectory of Eq. (8) is used, the rotor follows a
cylindrical orbit around the centreline of the stator. The
frequency of this movement is ω and radius is �ω.
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�	����%. Control system.

The bearing forces were measured using the magnetic
bearings as force sensors. Let us denote the control
currents in X and Y directions �Xn(�) and �Yn(�) where
n=1 or 2 refers to the two ends of the machine. The
whirling frequency current components were computed
as
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where � is a time long enough to give reliable results.
The relationship between the control current and
bearing force was measured and found to be linear in
the normal operation range of the bearings. Using the
measured current stiffness coefficients �I(X,Y)Q, the
whirling frequency components of the bearing forces
are obtained as



��������

��������

<I<<;I;;

<I<<<I;;

ωωωω

ωωωω

222222

111111

==

==
(10)

For each supply voltage – whirling frequency
combination, the force was measured twice. In both the
cases, the rotor was in whirling motion. In the first
measurement, the motor running at no load was fed by
the specified voltage U. In the second measurement, the
supply voltage was zero and the rotor not rotating. From
these measurements, the bearing force differences were
computed
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The total force, caused by the electrical motor, is
supposed to be
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where �Pω+ is a force rotating in the same direction as
the whirling motion and �Pω– is the force component
rotating in the opposite direction.
The whirling frequency rotor forces were computed
from the bearing forces as
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where superscript * denotes a complex conjugate. In the
circular whirling motion considered, the backward
rotating force component �Pω– should be zero. In the
tests, it was computed and verified to be negligible
compared with the forward rotating force.
The shaft of the standard motor is flexible. The large
magnetic forces caused some bending that disturbed the
measurements. The effect of bending was eliminated
from the results measured at the synchronous whirling
speed by using a rotor dynamic model. The parameters
of the rotor model were adjusted by fitting the two first
natural frequencies to the measured values.
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Figure 2 shows the radial and tangential components of
the force computed and measured for the test motor as
functions of the whirling frequency. The whirling radius
is 50 µm, and the unloaded motor is supplied from a
230 V sinusoidal, three-phase voltage source. The
supply voltage was reduced from the rated 380 V to
keep the magnetic bearings at their linear range of
operation and guarantee an accurate force measurement
for the whole range of the whirling frequency.
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��������� Radial and tangential forces measured and
computed for the motor at no load.

The radial force has a sharp maximum at 25 Hz whirling
frequency. As discussed in Section 2.2, the eccentricity
produces two additional flux-density waves with pole
numbers �±1 into the air gap. These eccentricity
harmonics usually move at a speed different from the
speed of the rotor. Thus, the flux density is time-
dependent and induces currents in the rotor cage. The
currents oppose the change of the flux, equalise the flux
distribution and reduce the radial force. At the 25 Hz
whirling frequency, both the eccentricity harmonics
have zero slip with respect to the rotor i.e. they are static
fields. No equalising currents are induced, and the
maximum in the radial force occurs.
The agreement between the measured and computed
forces is good. The largest difference occurs in the
tangential force around the 25 Hz whirling frequency. It
may be that we were not able to maintain a constant
whirling speed when measuring close to the tangential
force maximums but the speed fluctuated. The forces
measured as time-averages are thus smaller than the
maximum value.
Figure 3 shows the calculated and measured radial force
as functions of the whirling radius. The whirling
frequency is 25 Hz, and the supply voltage has been
used as a parameter. The force increases linearly with
the relative eccentricity.
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������� �� Radial force measured and computed for
the unloaded motor as function of eccentricity at 25 Hz
whirling frequency. The curves from the bottom to the
top are associated with the supply voltages 150, 200 and
250 V. The solid lines show the computed forces.

As already discussed, it is difficult to take the magnetic
saturation of iron into account within analytic models.
The results of the analytic model [1] are compared with
the results of the FEM computation in Figure 4, which
shows the radial force as function of the supply voltage
in the case of dynamic eccentricity i.e. at 25 Hz whirling
frequency. At small voltages, the iron core is non-
saturated, and the forces predicted by the two methods
agree. At higher voltages, the saturation of iron
suppresses the eccentricity harmonics and reduces the
force. The analytic method does not model this effect.
The different operation states of the machine and the
effects of machine constructions on the forces are
studied in more detail in reference [9].

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 100 200 300 400

Supply voltage [V]

R
ad

ia
l f

or
ce

 [
N

]

Analytical Computed

������� �� Radial force calculated for the motor as
function of the supply voltage at no load and 25 Hz
whirling frequency. The analytic model neglects the
magnetic saturation of iron. The rated voltage of the
motor is 380 V.
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In spite of the strong magnetic non-linearity, the spatial
dependence of the measured and computed forces
proved to be linear. This justifies the use of Eqs. (6) and
(7) for the saturated operation points. The parameters
fitted for the low-order model are given in Table 2.

�#$����� Parameters of the low-order model for the
15 kW test motor supplied by the rated voltage.

Parameter No load Half load Rated load

�0 [MN/m] 4.13 4.89 6.22

�S-1 [MN/ms] 8.37 9.10 15.7

�S+1 [MN/ms] 94.7 102.5 74.9

	S-1 [1/s] –0.59x2π
+25.0x2π �

–0.42x2π
+25.4x2π �

–0.50x2π
+25.8x2π �

	S+1 [1/s] –1.70x2π
+25.0x2π �

–2.09x2π
+23.8x2π i

–1.68x2π
+22.6x2π �

In Figure 5, the frequency response functions obtained
from the low-order model are compared with the ones
from FE-analysis in the case of a loaded motor. The
loading affects the radial and tangential forces. The
single maximum in the radial force of the unloaded
motor is divided into two. The eccentricity harmonics
�–1 and �+1 have their zero slips at whirling
frequencies 25.80 and 22.60 Hz (Eq. 3, 
=0.032). At
these frequencies, the corresponding harmonic rotor
currents are zero, and as the flux-density harmonics are
not damped, they have maximum amplitudes. The radial
force has two local maximums close to those whirling
frequencies at which the harmonics have zero slips.
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�������%� Frequency response function computed for
the motor at rated load. The thick line presents Eq. (6);
the circles denote the results from FE-analysis.

Let us study next, how well Eq. (7) predicts a transient
response. For this purpose, the rotor is displaced from
the central position for a short period of time and the
response to this displacement is studied using both Eq.



(7) and FE analysis. The results are shown in Figure 6.
Eq. (7) predicts the low frequency component of the
transient force as well as the finite element analysis.
There is a relatively large high-frequency component
associated with the slotting, which is not predicted.
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������� &� Comparison of the transient responses
obtained using the low-order model and FE-analysis.
The thicker line is associated with the low-order model.

�	����������� ���������'���������
The radial force decreases the mechanical resonance
frequencies and critical speeds. It increases the
unbalance response at speeds below the first critical
speed i.e. it increases the vibration amplitudes and
synchronous bearing forces. Note that the unbalance
excitation frequency is exactly the mechanical rotation
frequency, and therefore, it occurs near the force peaks
shown in Figures 2 and 5.
The tangential force component has a destabilising
effect on those forward rotating whirling modes for
which the natural frequency is below the rotating speed.
This effect is strongest when the rotational speed is
slightly higher than the natural frequency.
The high frequency force component, shown in Figure
6, may generate considerable acoustic noise when the
frequency of the force matches with a mechanical
resonance frequency of the structure. An important
feature of the high frequency force component is that
the amplitude is dependent on rotor position.
Because the air gap of a standard induction motor is
small, the negative spring effect may become large
compared to magnetic bearing stiffness. The situation is
especially difficult when the rotation speed, and the
resonance peaks seen in Figures 2 and 5, is below the
gain crossover frequency of the position control loop.
This was the case in our test machine. Even though the
bearings worked well when at small supply voltages, we
had to increase the bearing stiffness considerably to be
able to measure at higher supply voltages. In case of
frequency converter fed high speed machines, a good
method to overcome this difficulty is to use a quadratic
voltage ramp when running the machine up.
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The electromagnetic force acting on a whirling cage
rotor has been studied. The magnetic field of the cage
induction motor was solved using time-stepping finite
element analysis, and the force was computed from the
air-gap magnetic field. A standard 15 kW four-pole
induction motor was equipped with active magnetic
bearings to obtain a test machine for verifying the
method of force calculation. The whirling motion was
achieved by a proper control of the magnetic bearings.
The bearings were also calibrated to measure the force
acting between the rotor and stator. The measured and
computed forces show good agreement. The
numerically computed forces were fitted to a simple
second order transfer function model. The fit seems to
be excellent. This implies that a relatively simple force
model can be used as first approximation when studying
the effects of the magnetic forces on rotor dynamics.
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