DYNAMICS OF A RIGID ROTOR - MAGNETIC BEARING SYSTEM EQUIPPED WITH A THRUST MAGNETIC BEARING

Yick Sing Ho
The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China
Peilin Jiang
The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China
Lie Yu
Xi'an Jiaotong University, Xi' an, Shaanxi, P. R. China

Abstract

This paper is concerned with the dynamics of a rigid rotor supported by journal and thrust active magnetic bearings. For small perturbation, the action of the thrust bearing can be described by a series of stiffness coefficients. The system equations are formulated by combining the equations of motion of the rotor and the equations of the decentralized PID controllers. The eigenvalues of system are calculated and examined. The results indicate that the thrust magnetic bearing has great influence on the eigenvalues corresponding to lowfrequency conical whirls, and causes the system stability to degrade.

INTRODUCTION

Magnetic bearings have found wide applications in fields such as aerospace, petrochemical and power generation industries due to its advantages over traditional rolling or sliding bearings. As the system is working on closedloop, the performance of an active magnetic bearingrotor system relies heavily on the dynamic characteristics of the entire system composed of rotor, journal and thrust magnetic bearings including coils, sensors, controllers and amplifiers, and other parameters of the rotor system. The unmodelled dynamics related to these factors may lead to system failures, and thus need to be investigated. In this paper, the effect of a thrust magnetic bearing on the dynamics of a rigid rotor supported by magnetic bearings is studied.
Thrust magnetic bearings are used as supports to balance axial loads and therefore their effects are often neglected when performing tuning of the controllers or dynamic analysis of systems in lateral directions. Studies on hydrodynamic bearings have revealed that hydrodynamic thrust bearings may have great effects upon the lateral static and dynamic behavior of rotor systems due to the moments produced by them [1,2,3]. For a rotor system equipped with a thrust magnetic bearing, such effects may also exhibit. The moment
stiffness is negative, and the moments force the runner towards the thrust magnetic bearing, and affect the system stability.
The dynamic behavior of a thrust magnetic bearing can be described by a series of moment and force stiffness coefficients[4]. In this paper, they are used in formulating the equations of motion of a rigid rotor supported by journal and thrust magnetic bearings considering the effect of thrust bearing. Applying the equations of a decentralized PID control system, system equations in state space are obtained. The eigenvalues of the system are calculated, and the effect of thrust magnetic bearing on system stability is examined thereafter.

FORMULATIONS

Equations of motion of the rotor

A five-degree-of-freedom rigid rotor-active magnetic bearing system is depicted in FIGURE 1. The equations of motion of the rotor can be formulated as
$M_{B} \ddot{q}_{B}+G_{B} \dot{q}_{B}=Q$,
where M_{B} and G_{B} are respectively the mass and damping matrices of the rotor, Q is force exerted on the rotor, q_{B} is displacement vector of the rotor,

FIGURE 1: Structure of a Rotor-Active Magnetic Bearing System
$M_{B}=\left[\begin{array}{ccccc}\frac{l_{b}}{l} m & 0 & \frac{l_{a}}{l} m & 0 & 0 \\ 0 & \frac{l_{b}}{l} m & 0 & \frac{l_{a}}{l} m & 0 \\ -\frac{1}{l} J_{o y} & 0 & \frac{1}{l} J_{o y} & 0 & 0 \\ 0 & -\frac{1}{l} J_{o x} & 0 & \frac{1}{l} J_{o x} & 0 \\ 0 & 0 & 0 & 0 & m\end{array}\right]$,
$G_{B}=\frac{J_{o z} \omega}{l}\left[\begin{array}{ccccc}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ -1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$,
$Q=\left\{\begin{array}{c}-\Delta F_{x a}-F_{x b} \\ \Delta F_{y a}-\Delta F_{y b} \\ \Delta F_{x a} l_{a}-\Delta F_{x b} l_{b}-\Delta M_{y c} \\ \Delta F_{y a} l_{a}-\Delta F_{y b} l_{b}-\Delta M_{x c} \\ -\Delta F_{z c}\end{array}\right\}, q_{B}=\left\{\begin{array}{c}x_{a} \\ y_{a} \\ x_{b} \\ y_{b} \\ z\end{array}\right\}$,
m is mass, $J_{o x}$ and $J_{o y}$ are equatorial moments of inertia, $J_{o z}$ is polar moment of inertia, ω is angular velocity, l_{a} and l_{b} are the distances of journal bearings to the center of mass O (FIGURE 2), $l=l_{a}+l_{b}, \Delta F_{x j} \quad$ and $\Delta F_{y j}(j=a, b)$ are dynamic forces of journal bearings in the x and y directions, ΔM_{x} and ΔM_{y} are dynamic moments of thrust bearing in the x and y directions, and ΔF_{z} is dynamic force of thrust bearing in the axial direction.

FIGURE 2: A Rigid Rotor in Equilibrium
In the case of small perturbation, the dynamic actions of magnetic bearings can be described by a series of displacement and current stiffness coefficients. Therefore the dynamic forces produced by the journal bearings are
$\left\{\begin{array}{l}\Delta F_{x j} \\ \Delta F_{y j}\end{array}\right\}=\left[\begin{array}{cccc}k_{x x}^{j} & 0 & k_{x i}^{j} & 0 \\ 0 & k_{y y}^{j} & 0 & k_{y i}^{j}\end{array}\right]\left\{\begin{array}{l}x_{j} \\ y_{j} \\ i_{x j} \\ i_{y j}\end{array}\right\}(j=a, b)$,
where $k_{x x}^{j}$ and $k_{y y}^{j}$ are force-displacement stiffness coefficients of bearing $j, k_{x i}^{j}$ and $k_{y i}^{j}$ are force-current stiffness coefficients of bearing $j, \quad x_{j}$ and y_{j} are displacements of journal j in the x and y directions respectively, $i_{x j}$ and $i_{y j}$ are control currents of journal bearing j in the x and y directions respectively.
The dynamic forces and moments produced by the thrust bearing are [4]
$\left\{\begin{array}{c}\Delta F_{z c} \\ \Delta M_{x c} \\ \Delta M_{y c}\end{array}\right\}=\left[\begin{array}{cccc}k_{z z} & k_{z \varphi} & k_{z \psi} & k_{z i} \\ k_{x z}^{m} & k_{x \varphi}^{m} & k_{x \psi}^{m} & k_{x i}^{m} \\ k_{y z}^{m} & k_{y \varphi}^{m} & k_{y \psi}^{m} & k_{y i}^{m}\end{array}\right]\left\{\begin{array}{c}z \\ \varphi \\ \psi \\ i_{z}\end{array}\right\}$,
where $k_{z n}\left(n=z, \psi, \varphi\right.$ and $\left.i_{z}\right) \quad$ are force stiffness coefficients in the axial direction, $k_{x n}^{m}$ and $k_{y n}^{m}$ are moment stiffness coefficients in the x and y directions respectively, z is axial displacement of rotor, φ and ψ are tilting angles of runner, i_{z} is control current.
The tilt of a rigid rotor can be written as
$\left\{\begin{array}{l}\varphi=\left(x_{b}-x_{a}\right) / l \\ \psi=\left(y_{b}-y_{a}\right) / l\end{array}\right.$.
Substitution of Eqs.(2),(3) and (4) into Eq. (1) gives $Q=-K_{B} q_{B}-K_{I B} I_{B}$,
where

$$
\begin{align*}
& K_{B}=\left[\begin{array}{ccccc}
k_{x x}^{a} & 0 & k_{x x}^{b} & 0 & 0 \\
0 & k_{y y}^{a} & 0 & k_{y y}^{b} & 0 \\
-k_{x l}^{a} l_{a} & -\frac{k_{y \psi}^{m}}{l} & k_{x x}^{b} l_{b} & k_{y \psi}^{m} & \\
-\frac{k_{y \varphi}^{m}}{l} & +\frac{k_{y \varphi}^{m}}{l} & \frac{k_{y z}^{m}}{l} \\
-\frac{k_{x \varphi}^{m}}{l} & -k_{y y}^{a} l_{a} & -\frac{k_{x \psi}^{m}}{l} & \frac{k_{x \varphi}}{l} & k_{y y}^{b} l_{b} \\
+\frac{k_{x \psi}^{m}}{l} & k_{x z}^{m} \\
-\frac{k_{z \varphi}}{l} & -\frac{k_{z \psi}}{l} & \frac{k_{z \varphi}}{l} & \frac{k_{z \psi}^{l}}{l} & k_{z z}
\end{array}\right], \tag{5}\\
& K_{I B}=\left[\begin{array}{ccccc}
k_{x i}^{a} & 0 & k_{x i}^{b} & 0 & 0 \\
0 & k_{y i}^{a} & 0 & k_{y i}^{b} & 0 \\
-k_{x i}^{a} l_{a} & 0 & k_{x i}^{b} l_{b} & 0 & k_{y i}^{m} \\
0 & -k_{y i}^{a} l_{a} & 0 & k_{y i}^{b} l_{b} & k_{x i}^{m} \\
0 & 0 & 0 & 0 & k_{z i}
\end{array}\right], I_{B}=\left\{\begin{array}{l}
i_{x a} \\
i_{y a} \\
i_{x b} \\
i_{y b} \\
i_{z}
\end{array}\right\} .
\end{align*}
$$

Therefore the equations of motion of the rotor are
$M_{B} \ddot{q}_{B}+G_{B} \dot{q}_{B}+K_{B} q_{B}+K_{I B} I_{B}=0$.

Equations of sensors, amplifiers and PID controllers

The signal flow in a rotor-magnetic bearing system is shown in FIGURE 3. In the dynamic analysis of such a system, the dynamics of the sensors, power amplifiers and controllers should be considered.
The power amplifier can be modeled as a first-order system, whose transfer function is

FIGURE 3: Signal Flow in a Rotor-Active Magnetic Bearing System
$G_{a}(s)=\frac{A_{a}}{1+T_{a} s}$,
where A_{a} is gain, T_{a} is time constant, and the corresponding differential equation is
$T_{a} \dot{I}_{B}+I_{B}+A_{a} U_{\text {out }}=0$,
where I_{B} is control current, $U_{\text {out }}$ is output voltage of controller or input voltage of amplifier.
The displacement sensor is again represented by a firstorder model, i.e.
$G_{s}(s)=\frac{A_{s}}{1+T_{s} s}$,
where A_{s} is gain, T_{s} is time constant, and the corresponding differential equation is
$T_{s} \dot{U}_{s}+U_{s}-A_{s} L_{S B} q_{B}=0$,
where U_{s} is output voltage of sensor, $L_{S B}$ is the coupling matrix to account for the effect of noncollcation between sensor and actuator,
$L_{S B}=\frac{1}{l}\left[\begin{array}{ccccc}l_{b}+l_{s a} & 0 & l_{a}-l_{s a} & 0 & 0 \\ 0 & l_{b}+l_{s a} & 0 & l_{a}-l_{s a} & 0 \\ l_{b}-l_{s b} & 0 & l_{a}+l_{s b} & 0 & 0 \\ 0 & l_{b}-l_{s b} & 0 & l_{a}+l_{s b} & 0 \\ 0 & 0 & 0 & 0 & l\end{array}\right]$,
$l_{s a}$ and $l_{s b}$ are the distances of sensors in the lateral directions to the center of mass O (FIGURE 2).
The transfer function of the PID controller is
$G_{r}(s)=K_{p r}+\frac{K_{i r}}{s}+\frac{K_{d r} s}{1+T_{d r} s}$,
where $K_{p r}$ is proportional gain, $K_{i r}$ is integral gain, $K_{d r}$ is derivative gain and $T_{d r}$ is time constant, the corresponding differential equation is
$\left(K_{d r}+K_{p r} T_{d r}\right) \ddot{U}_{e}+\left(K_{p r}+K_{i r} T_{d r}\right) \dot{U}_{e}$
$+K_{i r} U_{e}-\dot{U}_{\text {out }}-T_{d r} \ddot{U}_{\text {out }}=0$,
where U_{e} is error voltage.
Differentiating Eq.(8), we have
$T_{a} \ddot{I}_{B}+\dot{I}_{B}+A_{a} \dot{U}_{\text {out }}=0$,
Considering the summing point, $U_{e}=U_{0}-U_{s}$, and for ideal PID controllers, reference input voltage $U_{0}=0$, we have
$T_{s} \ddot{U}_{e}+\dot{U}_{e}+A_{s} L_{S B} \dot{q}_{B}=0$,
and

$$
\begin{align*}
& -T_{d r} \ddot{U}_{\text {out }}-\dot{U}_{\text {out }}+\left(K_{p i}-K_{d p} T_{s}^{-1}-K_{i r} T_{s}\right) \dot{U}_{e} \\
& -K_{d p} T_{s}^{-1} A_{s} L_{S B} \dot{q}_{B}-K_{i r} A_{s} L_{S B} q_{B}=0 \tag{15}
\end{align*}
$$

where

$$
\begin{aligned}
& K_{d p}=K_{d r}+K_{p r} T_{d r} \\
& K_{p i}=K_{p r}+K_{i r} T_{d r} .
\end{aligned}
$$

System equations

Combining the equations for the rotor, the sensors, the amplifiers and the PID controllers, the system equations are obtained
$\left\{\begin{array}{l}M_{B} \ddot{q}_{B}+G_{B} \dot{q}_{B}+K_{B} q_{B}+K_{I B} I_{B}=0 \\ T_{a} \dot{I}_{B}+\dot{I}_{B}+A_{a} \dot{U}_{\text {out }}=0 \\ T_{s} \dot{U}_{e}+\dot{U}_{e}+A_{s} L_{S B} \dot{q}_{B}=0 \\ -T_{d} \ddot{U}_{\text {out }}-\dot{U}_{\text {out }}+\left(K_{p i}-K_{d p} T_{s}^{-1}-K_{i r} T_{s}\right) \dot{U}_{e} \\ -K_{d p} T_{s}^{-1} A_{s} L_{S B} \dot{q}_{B}-K_{i r} A_{s} L_{S B} q_{B}=0\end{array}\right.$.
When state variables $X_{m}=\left(q_{B}, I_{B}, \dot{q}_{B}, \dot{I}_{B}, \dot{U}_{e}, \dot{U}_{\text {out }}\right)^{T}$ are introduced, the corresponding system equations in state space are
$\dot{X}_{m}=A_{m} X_{m}$,
where
$A_{m}=\left[\begin{array}{cccccc}0 & 0 & I & 0 & 0 & 0 \\ 0 & 0 & 0 & I & 0 & 0 \\ A_{m 13} & A_{m 23} & A_{m 33} & 0 & 0 & 0 \\ 0 & 0 & 0 & -T_{a}^{-1} \omega^{-1} & 0 & -T_{a}^{-1} \omega^{-1} A_{a} \\ 0 & 0 & A_{m 35} & 0 & -T_{s}^{-1} \omega^{-1} & 0 \\ A_{m 16} & 0 & A_{m 36} & 0 & A_{m 56} & -T_{d r}^{-1} \omega^{-1}\end{array}\right]$,
with $A_{m 13}=-M_{B}^{-1} \omega^{-2} K_{B}, A_{m 16=}-T_{d r}^{-1} \omega^{-2} K_{i r} A_{s} L_{S B}$,
$A_{m 23}=-M_{B}^{-1} \omega^{-2} K_{I B}, \quad A_{m 33}=-M_{B}^{-1} \omega^{-1} G_{B}$,
$A_{m 35}=-T_{s}^{-1} \omega^{-1} A_{s} L_{S B}, A_{m 36}=-T_{d r}^{-1} \omega^{-1} K_{d p} T_{s}^{-1} A_{s} L_{S B}$,
$A_{m 56}=T_{d r}^{-1} \omega^{-1}\left(K_{p i}-K_{d p} T_{s}^{-1}-K_{i r} T_{s}\right)$.
This generalized eigenvalue problem can be solved by using the QR algorithm.

NUMERICAL RESULTS AND DISCUSSIONS

The rotor depicted by FIGURE 2 is analyzed with parameters given in TABLE 1. The parameters of the controllers, power amplifiers and sensors are given in TABLE 2. The parameters of journal bearings are: radial clearance 0.0004 m , bias current is 4 A , winding number
is 57 , width is 0.044 m , diameter is 0.06 m . The parameters of thrust bearing are: clearance is 0.0005 m , bias current is 4 A , winding number is 145 , diameter is 0.15 m , axial load is 1500 N . The rotating speed is $30,000 \mathrm{r} / \mathrm{min}$.
The dimensionless eigenvalues of the rotor system are given in TABLE 3. The corresponding dimensionless eigenmodes in the lateral directions are depicted in
FIGURE4.

TABLE 1: Parameters of Rotor

Parameter	Value
$l_{a}(\mathrm{~mm})$	76.3
$l_{b}(\mathrm{~mm})$	103.7
$l_{s a}(\mathrm{~mm})$	46.3
$l_{s b}(\mathrm{~mm})$	73.7
$m(\mathrm{~kg})$	9.78
$J_{o x}\left(\mathrm{~kg} / \mathrm{m}^{2}\right)$	0.143
$J_{o y}\left(\mathrm{~kg} / \mathrm{m}^{2}\right)$	0.143
$J_{o z}\left(\mathrm{~kg} / \mathrm{m}^{2}\right)$	0.0102

TABLE 2: Parameters of Controllers, Sensors and Power Amplifiers

Bearing type	Parameter	Value
	$A_{a}(1 / \Omega)$	1
	$A_{s}(\mathrm{~V} / \mathrm{m})$	7800
	$T_{a}(\mathrm{~s})$	$3.2 \mathrm{e}-5$
	$T_{s}(\mathrm{~s})$	$3.2 \mathrm{e}-5$
	$T_{d r}(\mathrm{~s})$	$6.0 \mathrm{e}-4$
	$k_{p r}$	$3.8 \mathrm{e}-4$
	$k_{i r}(1 / \mathrm{s})$	200
	$k_{d r}(\mathrm{~s})$	0.01
	$A_{a}(1 / \Omega)$	1
	$A_{s}(\mathrm{~V} / \mathrm{m})$	7800
	$T_{a}(\mathrm{~s})$	$3.2 \mathrm{e}-5$
Thrust	$T_{s}(\mathrm{~s})$	$3.2 \mathrm{e}-5$
bearing	$T_{d r}(\mathrm{~s})$	$1.0 \mathrm{e}-4$
	$k_{p r}$	$3.8 \mathrm{e}-4$
	$k_{i r}(1 / \mathrm{s})$	200
	$k_{d r}(\mathrm{~s})$	0.01

(1)The modes mainly fall into four categories, namely cylindrical whirls, conical whirls, their combinations and axial translation.
(2)As the effective stiffness of magnetic bearings is much lower than that of oil-lubricated bearings, the mechanically-dominant vibrations(modes 2-5) lie in the low-frequency zone, while the electrically-dominant vibrations in the high-frequency zone(modes 6-13).
(3)In the low-frequency zone, the first three modes (modes 1-3) correspond to the axial translation and cylindrical whirls. Therefore the thrust bearing show little effect on them. The physical meaning is obvious: the dynamic moments provided by the thrust bearing are only related to the dynamic tilt of rotor, therefore the effect on these two kinds of motions is insignificant. The fourth- and fifth-order modes are typically conical ones. As a result, the effect of thrust bearing on them is significant. The whirling frequencies are raised by 32.2% and 20.4% respectively, while the absolute values of the real parts of eigenvalues are reduced by 26.8% and 36.5% respectively. The dimensionless damping, which is the absolute value of the ratio of the real part to the imaginary part, is thereby reduced, and the system stability degrades.
(4)In the modes corresponding to the lateral whirls (modes 2-13), components related to the axial motion are zeros, while in those corresponding to the axial motion(modes $1,14,15$), the components related to the lateral whirls are zeros. This indicates that the lateral motion shows little effect upon the axial translation.
(5)The variation of the fourth- and fifth- order eigenvalues with the bias current of thrust bearing is shown in FIGURE 5. The axial load is 0N. The action of the thrust bearing becomes more significant when the current increases, which is due to the increase of the negative moment stiffness of thrust bearing.

TABLE 3: Dimensionless Eigenvalues λ_{i} / ω

Mode	Not consider TAMB	Consider TAMB
1(AM)	$-0.8674 \pm \mathbf{i} 0.2570$	$-0.8674 \pm \mathbf{i} 0.2570$
2(LM)	$-0.7826 \pm \mathbf{i} 0.3495$	$-0.7826 \pm \mathbf{i} 0.3495$
3(LM)	$-0.7826 \pm \mathbf{i} 0.3495$	$-0.7826 \pm \mathbf{i} 0.3495$
4(LM)	$-0.6327 \pm \mathbf{i} 0.5608$	$-0.4633 \pm \mathbf{i} 0.7411$
5(LM)	$-0.6393 \pm \mathbf{i} 0.6974$	$-0.4057 \pm \mathbf{i} 0.8395$
6(LE)	$-4.1909 \pm \mathbf{i} 10.209$	$-4.4090 \pm \mathbf{i} 10.040$
7(LE)	$-3.4585 \pm \mathbf{i} 11.715$	$-3.6395 \pm \mathbf{i} 11.510$
8(LE)	$-200.55 \pm \mathbf{i} 12.989$	$-200.55 \pm \mathbf{i} 12.990$
9(LE)	$-200.47 \pm \mathbf{i} 13.007$	$-200.47 \pm \mathbf{i} 13.008$
10(LE)	$-2.2094 \pm \mathbf{i} 19.981$	$-2.2107 \pm \mathbf{i} 19.978$
11(LE)	$-2.1954 \pm \mathbf{i} 20.024$	$-2.1976 \pm \mathbf{i} 20.020$
12(LE)	$-201.99 \pm \mathbf{i} 21.491$	$201.99 \pm \mathbf{i} 21.491$
13(LE)	$-201.99 \pm \mathbf{i} 21.492$	$-201.99 \pm \mathbf{i} 21.492$
14(AE)	$-8.0686 \pm \mathbf{i} 58.272$	$-8.0686 \pm \mathbf{i} 58.272$
15(AE)	$-222.66 \pm \mathbf{i} 65.531$	$-222.66 \pm \mathbf{i} 65.531$

*A: axial translation; L: lateral whirl;
M: mechanically dominant; E: electrically dominant.

FIGURE 4: Dimensionless Eigenmodes of the Rotor-Active Magnetic Bearing System (x-displacements in the x direction, y-displacements in the y direction, $C_{0 r}$-radial clearance of journal bearings)

FIGURE 5: The Fourth- and Fifth- Order Eigenvalues versus Bias Current of Thrust Bearing
(U-real part of eigenvalue, V-whirling frequency)

CONCLUSIONS

(1)The system equations of motion for a rigid rotor supported by journal and thrust bearings are formulated. The effect of noncollocation of sensors and actuators, the effect of thrust bearing on the lateral vibration, the electromechanical coupling and the coupling between the two journal bearings can be taken into account.
(2)The negative moment stiffness of thrust bearing can increase the frequencies of some of the conical lateral whirl, and reduce the corresponding damping, and as a result may deteriorate system stability. Therefore
sufficient attentions should be paid to this effect in the analysis and design of rigid rotor systems equipped with a magnetic thrust bearing in order to ensure system reliability.

ACKNOWLEDGEMENT

The work described in this paper was fully supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No.PolyU5115/98E).

REFERENCES

1. MITTWOLLEN N., HEGEL T. and GLIENICKE J, Effect of hydrodynamic thrust bearings on lateral shaft vibration. Transactions of ASME, Journal of Tribology, 1991, 113: 811-818.
2. YU L. and BHAT R. B., Coupled dynamics of a rotorbearing system equipped with a hydrodynamic thrust bearing. Shock and Vibration, 1995,2:1-14.
3. JIANG P. L. and YU L., Dynamics of a rotor-bearing system equipped with a hydrodynamic thrust bearing. Journal of Sound and Vibration, 1999,227: 833-872.
4. HO Y. S., YU L. and LIU H. Rotor dynamic coefficients of a thrust active magnetic bearing considering runner tilt. Proceedings of IMechE, Journal of Engineering Tribology, 1999, 213: 451-462.
