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ABSTRACT
In this paper, firstly, we study the asymptotic stabili-
ty for adaptive nonlinear algorithm in non-stationary
condition and we also study the relationship between
control level and frequency change rate and distur-
bance amplitude change rate in detail. We obtain
the conclusion that the control result has a great in-
fluence on amplitude change rate, and has not influ-
ence on frequency change rate while that frequency
change rate is known. After that, we apply the adap-
tive nonlinear algorithm for magnetic bearing system
to control the vibration due to unbalance when the
rotor would be accelerated from start-up to opera-
tional speed beyond its critical speed. The effective-
ness of our proposed adaptive nonlinear algorithm is
verified by the simulations and experiments.

INTRODUCTION
The forced vibration of the rotor caused by the un-
balance excitation force is the fateful problem in a
rotating machine for high-speed including the rotor-
magnetic bearing system. If the vibration becomes
large enough, the rotor cannot increase the rotation-
al speed beyond its the critical speed and the op-
eration will become impossible. It is an important
subject to that such suppression of the unbalance vi-
bration, especially in the amplitude of the resonance
zone, because it may give a great influence to the
rotor system, which the excitation force due to the
centrifugal force is received in.
Frequency estimation has been reported as for the
case as well that a periodic disturbance when the
frequency of disturbance were unknown, and fur-
thermore the adaptive disturbance rejection with

the multiple frequencies estimation and a frequency
tracking function for the periodic disturbance were
proposed by authors[1]∼[4] .And then, the control ex-
periment result of the unbalance vibration show that
the technique proposed was validity when the rotor
is rotating at high speed. On the other hand, gener-
ally, it will take fixed time from the start-up to oper-
ational speed for the rotor with the rotation machine
such as the magnetic bearing. In this case, the rotor
will be beyond the critical speed of the rigid mode.
Therefore, it is necessary to control the vibration ful-
ly as an occasion. If the unbalance vibration become
large enough, the control performance gets extreme-
ly poor due to that the power amplifier is saturated.
In this paper, we study the method about adaptive
control in the non-stationary condition in the case
of such a frequency of the periodic disturbance was
change, and examined the relations between the sup-
pression effect and the change rates of the amplitude
and the frequencies. Furthermore, the validity of the
adaptive control nonlinear algorithm in the nonsta-
tionary condition was confirmed by the simulation
and the verification experiment.

ADAPTIVE REJECTION APPROACH
FOR NON-STATIONARY PERIODIC DIS-
TURBANCE
In this section, we develop an adaptive algorithm
for the control of the non-stationary periodic distur-
bance. The block diagram of a non-stationary peri-
odic disturbance active adaptive rejection using this
method is shown in FIGURE 1. Furthermore, the
details of the adaptive algorithm are shown in FIG-
URE 2.
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FIGURE 1: Block diagram of the control system
rejecting periodic disturbance
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FIGURE 2: Block diagram of adaptive algorithm
for internally generating reference signal

In FIGURE 2 , the left block shows the calcula-
tion of the harmonic as sine and cosine function, the
middle block shows the modification of Fourier coef-
ficients α(t), β(t) of the input signal to plant adapt-
ability, and the right block shows the control input
generated for the plant from the Fourier coeffitients.
The purpose of this algorithm is such that the gener-
ated pseudo-feedforward control input signal to the
plant in FIGURE 2 convolutes in the presence of
a disturbance as shown in FIGURE 1 and cancels
the error, thus, the error signal become smaller.
The adaptive algorithm without observation noise
was proposed[1][2]. And the adaptation algorithm
with the frequency tracking method was examined to
control stationary periodic disturbance[3]. In this pa-
per, the adaptation rejection algorithm is examined
to control the non-stationary periodic disturbance .
Firstly, the non-stationary periodic disturbance
which has single frequency is given as follows:

d(t)=αd(t)sin(ω0t+∆ωt)+βd(t)cos(ω0+∆ωt) (1)

Here, ω0 is the frequency of the disturbance at the
control start, αd(t), βd(t) are the amplitude of the
disturbance, and ∆ω are the frequency change rate
of moment. We assume that the transfer function of
the plant is G(s) = A(ω)ejθ. And the control input
r(t) to the plant is defined here as follows:

r(t)=α(t)sin(ω0+∆ωt)t+β(t)cos(ω0+∆ωt)t (2)

Here, α(t), β(t) are the Fourier coefficients modified
by the adaptive control algorithm.
In this case, the output y(t) of the plant is shown as
follows:

y(t) = r(t)G(jω)
= A(ω)[α(t)sin[(ω0 +∆ωt)t+ θ(ω)]
+ β(t)cos[(ω0 +∆ωt)t+ θ(ω)]

(3)

However, A(ω) and θ(ω) are the gain and the phase
of the plant at frequency ω. Then the error signal
e(t) of the system becomes:

e(t) = y(t) + d(t)
= A(ω){α(t)sin[(ω0 +∆ωt)t+ θ(ω0)]
+ β(t)cos[(ω0 +∆ωt)t+ θ(ω0)}
+ αd(t)sin(ω0 +∆ωt)t+ βd(t)cos(ω0 +∆ωt)t

(4)

We consider the error signal e(t) in the signal pro-
cessing, as shown in FIGURE 3.

ω

ω
FIGURE 3: Details of the block SEC of FIGURE
2

h(t) is a low pass filter and its outputs was written
approximatlly as follows:

{
n1(t) = e(t)sin(ω0 +∆ωt)t
n2(t) = e(t)cos(ω0 +∆ωt)t

(5)

Firstly, we consider n1(t).

n1(t) = A(ω){α(t)sin[ω0 +∆ωt)t+ θ(ω0)]
+ β(t)cos[(ω0 +∆ωt)t+ θ(ω0)]}sin(ω0 +∆ωt)t
+ [αd(t)sin(ω0 +∆ωt)t
+ βd(t)cos(ω0 +∆ωt)t]sin(ω0 +∆ωt)t
= 0.5A(ω){α(t)[cosθ(ω)−cos(2(ω0+∆ωt)t+θ(ω))]
+ β(t)[sin(2(ω0 +∆ωt)t+ θ(ω)) + sinθ(ω)]}
+ 0.5{αd(t)[1− cos2(ω∆ωt)t]
+ βd(t)sin2(ω0 +∆ωt)t}

(6)

Here, we define the cutoff frequency ωB of the low
pass filter as ωB � 2ω0. As result, we can neglect
the relatively small gain at high-frequency compo-
nents to determine the true value of the disturbance
frequency ω0.
In this state, the output n1(t) of the low pass filter
can be written as follows approximately.

n1(t) = 0.5A(ω){α(t)cosθ(ω) + β(t)sinθ(ω)}
+ 0.5αd(t)

(7)

We can also obtain the output n2(t) as follows:
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n2(t) = 0.5A(ω){α(t)sinθ(ω) + β(t)cosθ(ω)}
+ 0.5βd(t)

(8)

Firstly, let us supposes that disturbance frequency
can be identified. In this case, an adaptive law does
not depend on phase θ and is defined as follows[2]:

{
α(k + 1) = α(k) − µ1(k + 1)n1(k)
β(k + 1) = β(k)− µ2(k + 1)n2(k)

(9)

Here, µ1, µ2 are the step sizes. Forthermore,

n1(k + 1) = 0.5A(ω)[α(k + 1)cosθ(ω)
+ β(k + 1)sinθ(ω)] + 0.5αd(k + 1)
= n1(k)− 0.5A(ω){µ1(k + 1)n1(k)cosθ(ω)
+ µ2(k + 1)n2(k)sinθ(ω)}+ 0.5∆αd(k + 1)∆t

(10)

n2(k+1)=n2(k)−0.5A(ω){µ1(k+1)n1(k)sinθ(ω)
+ µ2(k + 1)n2(k)cosθ(ω)}+ 0.5∆βd(k + 1)∆t

(11)

∆α(k + 1),∆β(k + 1) is the change rate of the dis-
turbance coefficient in the moment k ∼ k + 1, and
∆t are sampling time.
However,
{
µ1(k + 1) = µ1(k)sgn(n1(k − 1)2 − n1(k)2)
µ2(k + 1) = µ2(k)sgn(n2(k − 1)2 − n2(k)2)

(12)

The above equation become a nonlinear adaptive
law.
It shows that the output signal of the filter has great
influence on amplitude change rate, and has no re-
lations influence on the frequency change rate of the
disturbance from Eqs.(10) and (11). The asymptotic
stability of the modification law of this nonlinear sys-
tem can be guaranteed if the initial value of µi is set
such fixed condition as |µ(0)| < 2√2/A(ω) for the d-
ifferent phase θ from the result[3], because ∆t is small
than 1/1000 seconds, ∆αd(k+1)∆t and ∆βd(k+1)∆t
is far smaller than 1. It is verified by the theoretical
consideration using Lyapunov asympototic stability
theorem and the simulation. Therefore, it is shown
that asympototic stability of the Eqs.(10) and (11)
is guaranteed.

SIMULATION
In this section, we examine the adaptive vibration
control to verify the validity of the above algorithm
at the resonance zone of the vibration system due to
the centrifugal force. The vibration equation of the
system is shown as follows here:

Mẍ+ Cẋ+Kx = m0r0ω
2sinωt (13)

In this case, the response of the system in the forced
oscillation state becomes:

x(t) =
m0r√

(1− ω2/ω2
n)2 + (2ξω/ωn)2

(14)

However, ξ = C
M .

Here, we establish as a parameter of the system
with M = 1Kg,K = 25N/mm,m0 = 0.006Kg, r =
0.02mm. In this case, the natural frequency of the
vibration system is ωn = 158.11Hz .

A response curves in the resonance zone of the vibra-
tion system for the various attenuation coefficients
C = 0.1, 0.2, 0.3, 0.5 are shown in FIGURE 4(a).

As for the amplitude of the resonance zone, the re-
sponse magnification varies according to the attenu-
ation coefficient as shown in FIGURE 4(a).
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FIGURE 4: Amplitudes of vibration system and
displacement attenuation results

In the case of the frequency change rate which it is
the same, the effect of the adaptive suppression is
different too from that the response magnification
of the amplitude of the resonance zone due to the
attenuation coefficient being different. Furthermore,
when the amplitude of the disturbance is constant
and only the change rate of the frequency is changed,
an adaptive suppression result becomes FIGURE
5. We can obtain the about same suppression result
even if a frequency change rate changes as shown in
FIGURE 5.
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FIGURE 5: Displacement attenuation results for d-
ifferent frequency change rate.

The above simulation shows that an adaptive sup-
pression effect of the non-stationary without taking
an influence in the change rate of the frequency, but
was taken in the change rate of the amplitude of the
system.
A 10KWh class high temperature superconductivi-
ty flywheel system for the electric power storage is
examined as an example.

FIGURE 6: Cross-sectional view of outer rotor
type flywheel

The total weight of this flywheel system was 104
tons, the weight of the rotor was 45.7 tons and its
operational speed was 6000rpm. The superconduct-
ing magnet is used to lift off the flywheel, and it is
applied to both of the axial direction and the radi-
al direction. The natural frequency of the flywheel
system about the first bending mode was 32.03Hz
by the analysis using the vibration analytic software
ANSYS. As for the stabilization control using AM-
B, we applied a sliding mode control technique and
the new natural frequency of the close loop control
system was 27.00Hz.

Here, for the case in which the disturbance frequen-
cy changes, the response is examined. Furthermore,
we applied non-stationary adaptive algorithm to con-
trol the vibration because the excitation force due to
the centrifugal force in the resonance zone (frequency
range in 26Hz ∼ 30Hz) of the rotor system.

In this case, the result of the system response is
shown in FIGURE 7. Angular accelerations are
set as 0.5Hz/s2, 2Hz/s2, 4Hz/s2 respectively. In
each figure, the upper figure is the responses in the
position of AMB1 and AMB3 using the sliding mode
controller for the stability, and the figure in the
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(a) ∆ω = 0.5Hz/s2
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FIGURE 7: System response using sliding mode
controller and adaptive attenution results

middle are the suppression results where non-
stationary adaptive rejection algorithm was applied
and the figure of the bottom are the input signals.

The validity of the non-stationary algorithm was con-
firmed using the flywheel as shown in FIGURE 7.
It is shown that the suppression result depends on
the frequency change rate, because the amplitude
change rate depends on the angular acceleration.

VERIFICATION EXPERIMENT

In order to confirm the results of simulation, we car-
ried out verification experiments using the five-axes
controlled magnetic bearing. First, we use the ana-
log PID controller to lift off the rotor stably. Then,
input the excitation signal to the magnetic bearing
through the amplifier, and make it excite. Here, the
frequency change rate of the excitation signal (peri-
odic disturbance) was set as 4Hz/s2.

Furthermore, we applied the nonlinear adaptive re-
jection algorithm to conduct the non-stationary vi-
bration suppression experiment. The block diagram
of the control system is shown in FIGURE 8. The
responses of system with and without the nonlinear
adaptive algorithm are shown in FIGURE 9.

Magnetic bearing
         SystemAMP

  Analog PID

DSPD/A A/D

PC9801

  Distur-
  bance

Pseudo-
feedforward
signal

Input Displacement

Feedback signal

+

+
+

r

FIGURE 8: Block diagram for control system

The results show the control process converges in
about two seconds after executed the controller and
this shows that the convergence of this algorithm is
fast. The validity of the proposed non-stationary
nonlinear adaptive algorithm is verified by the fact
that a disturbance in the resonance zone whose the
amplitude change rate is big can be controlled fully.
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FIGURE 9: Result of verification experiment

CONCLUTIONS
In this paper, we examined the nonlinear adaptive
rejection technique about the non-stationary period-
ic disturbance, and the conclusions are summarized
as following:
(1) In the non-steady state, the nonlinear adaptive

suppression result is no relations in the frequency
change rate, but depends on the amplitude change
rate of the signal.
(2) In the case of the rotor system vibration sup-

pression , specially, in the case of the adaptive
suppression of the resonance zone that amplitude
changes violently was examined.
From the case of the rotor vibration suppression,

specially the adaptive suppression of the resonance
zone that amplitude changes violently was examined,
the result is shown that it could obtain a good adap-
tive suppression result by the results of the theory
analysis, the simulation and the verification experi-
ment in the case of the amplitude change rate was
small due to that if the frequency change rate was
slow.
For future research, we plan to verify the adaptive
suppression algorithm of nonstationary with experi-
ments.
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