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ABSTRACT
This paper proposes a new approach for simultaneous
compensation of two synchronous periodic disturbances
in active magnetic bearings (AMB’s); sensor runout
(SRO) and mass unbalance. Using Lyapunov’s method,
a novel adaptive algorithm is developed to uniquely de-
termine the harmonic components of both disturbances
and guarantee asymptotic stability of the rotor geomet-
ric center about the origin. By varying magnetic stiff-
ness through excitation of the bias currents, the system
achieves a persistently exciting condition that ensures ex-
ponential convergence of estimated parameters to the true
values. The algorithm is superior to existing techniques
since the identification process can be performed without
changing rotor angular speed. Both simulation and exper-
imental results validate the effectiveness of the algorithm.

INTRODUCTION
The dominant sources of synchronous periodic distur-
bances in magnetic bearings are unbalance, which gener-
ates disturbance at the first harmonic of rotation, and sen-
sor runout, which generates disturbance at multiple har-
monics. While unbalance results from lack of alignment
between the geometric axis and the principal axis of in-
ertia, sensor run-out results from lack of concentricity of
the sensing surface and non-uniform electrical or mag-
netic properties around it. Our research will specifically
address the problem of synchronous mass unbalance and
sensor run-out compensation and provide the scope for ro-
tor stabilization about the geometric center.
There have been numerous studies on periodic distur-
bance compensation [1-3]. Unfortunately, most of the ap-
proaches found in the literature do not lend themselves
to runout estimation in the presence of significant mass
unbalance. This problem, widely acknowledged in the lit-
erature but essentially unsolved, stems from a lack of ob-
servability of disturbances with the same frequency con-

tent. A credible way to distinguish between these distur-
bances is to perturb the operating conditions of the plant
or its parameters. However, recent studies [4-5] that pro-
pose variation in rotor angular speed as a means to en-
hance observability may not be acceptable for most appli-
cations. Our approach to the problem is based on tradi-
tional adaptive control designs that has seen applications
with a variety of electromechanical systems [6] but not
magnetic bearings. In our approach, we will individually
identify synchronous mass unbalance and sensor run-out
at constant rotor speed through persistency of excitation.

MAGNETIC BEARING MODEL
Consider the rigid rotor in Fig. 1. Under magnetic levita-
tion, the rotor has two degrees of freedom along thex and
y axes; the displacements along these axes are measured
by non-contact gap sensors. The dynamics of the rotor
along these axes, which are both inclined at45Æ with the
horizontal, are decoupled but similar. Along thex axis,
one may write

m �x = F �m �g + fu; �g , g=
p
2 (1)

wherem is the mass of the rotor,x is the rotor position,
F is the magnetic force,fu is the unbalance force, andg
is the gravity. The magnetic force can be expressed as

F = k
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wherek is the magnetic force constant,l is the nominal
air gap,i10, i20 are the bias currents in the top and bottom
electromagnets, andI is the control current. By lineariz-
ing Eq.(2) aboutx = 0, I = 0, Eq.(1) can be written
as

m �x = Ksx+ fc + fu; fc ,KcI (3)
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wherefc is the control force,Ks andKc are the mag-
netic stiffness and actuator gain of the magnetic bearing
respectively. The mass unbalance force can be modeled
as

fu = m!2 [ p sin (!t) + q cos (!t)] (5)

wherep = �" sin (�u) , q = " cos (�u) , �u is the phase
of unbalance,! is the rotor angular speed, and" is the
eccentricity of the rotor.
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FIGURE 1: Magnetic bearing-rotor schematic

The true location of the rotor geometric center is not avail-
able for a magnetic bearing with sensor runout. Instead,
the gap sensors provide the signalxs.

xs = x+ d (6)

where,d, the SRO disturbance that can be expressed by
the Fourier series

d , a0 +

nX
i=1

ai sin(i!t) + bi cos (i!t) (7)

In the above expression,n is the number of harmonics,a0
is the DC component, andai, bi, i = 1; 2; : : : ; n, are the
harmonic Fourier coefficients.

ADAPTIVE CONTROL DESIGN
Preliminary
In this section we introduce an adaptive control frame-
work for stabilization of the rotor geometric center to the
origin. As shown in Fig. 2, the controller is an on-line
feedforward type. It consists of two main components:
the feedback law to stabilize the closed loop system and
the adaptation law to estimate the two periodic distur-
bancesfu andd simultaneously. We define the estimated
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FIGURE 2: Adaptive SRO and Unbalance
Compensation Framework

geometric position

�x , xs � d̂ (8)

d̂ , â0 +

nX
i=1

âi sin(i!t) + b̂i cos (i!t) (9)

In the above expression,â0 is the estimated value ofa0,
andâi, �bi are estimated values ofai, bi, respectively, for
i = 1; 2; : : : ; n. Using Eqs.(6), (8) and (9), we obtain

�x = x+ ed; ed , (d� d̂) = Y
T e� (10)

where,ed, the error in the estimate of sensor runout distur-
bance. The regressor vectorY, and the vector of parame-
ter estimation errorse�, are defined as

Y , [ 1 sin(!t) cos (!t) : : : sin(n!t) cos (n!t) ]
T

e�T , h ea0 e�T� e�T� i
wheree�� ,

hea1 eb1 iT , e�� , h ea2 eb2 : : : ean ebn iT ,ea0 , (a0 � â0), andeai , (ai � âi), ebi , (bi � b̂i),
i = 1; 2; : : : ; n.
The estimate of the unbalance force is defined as

f̂u , �YT
u �̂u (11)

whereYT
u , �m!2 [ sin(!t) cos (!t) ] and �̂u ,

[ p̂ q̂ ]
T . The termŝp andq̂ are estimates of Fourier coef-

ficientsp andq respectively. Thus, we can write the errors
in the estimation asep = p� p̂ andeq = q � q̂, or in vector
form e�u , [ ep eq ] (12)

For the variable magnetic stiffness approach, we intend to
excite the top and bottom bias currentsi10 andi20 by Æ1
andÆ2 in the following manner:

i10 = i�10 + Æ1; i20 = i�20 + Æ2 (13)

wherei�10 andi�20 are constant bias current in the top and
bottom coils. We denote
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By choosingÆ2 =
i�
10

i�
20

Æ1, we can verify using lineariza-
ton of Eq.(2) that this excitation produces zero bias force
about the origin. We can rewrite Eq.(4) as
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(14)
For simplicity, we useÆ1 = A sin(2�ft) where A is the
amplitude of excitation andf is the excitation frequency.
This frequency will be chosen to be smaller enough com-
pared to the rotor rotation frequency. By choosing a rela-
tively small A, we may assume that the effect of the exci-
tation to the net magnetic force in Eq.(2) is negligible.



Seventh International Symp.  on Magnetic Bearings, August 23-25 , 2000, ETH Zurich 551

Theoretical Development
With the objective of stabilizingx to the origin, we pro-
pose a Lyapunov function candidate

V =
1

2

h
(1��)m�e2 + e�T��1e�+ e�Tu��1u e�ui (15)

where � , diag(0; 1; 1; : : : ; n; n), �u ,

diag(p; q) for p; q > 0, and

�e , _�x+ ��x; � > 0 (16)

The constants0; 1; : : : ; n are positive and chosen such
that0 < � < 1, where

� ,Y
T�Ym =

nX
i=0

i
�
Ks +m(i!)2

�
(17)

Ym , KsY �m �Y (18)

SinceKs is time varying and_YT�Ym = 0, we get

_� = Y
T� _Ym = _Ks

nX
i=0

i (19)

Knowing that the excitationÆ1, causes the actuator gain
Kc to vary, the control currentI = fc=Kc in Eq.(3)
should be computed with a time varyingKc using
Eq.(14). By choosing the control force

fc = �Ks�x�m� _�x� (c+
1

2
m _�)�e� f̂u (20)

along with adaptation laws

_e� = �Ym �e;
_e�u = �uYu �e (21)

we can conclude that the closed loop system is stable and
all components of the estimate parameters�̂ and�̂u con-
verge to their true values. The proof is as follows. Using
Eq.(3) and Eqs.(15-21) the dynamics of the system can be
described by

m(1��)_�e = �YT
m
e�+

1

2
m _��e� c�e�YT

u
e�u (22)

The derivative of the Lyapunov function in Eq.(17) can be
easily shown to be_V = �c�e2 � 0. Knowing �V is uni-
formly continuous, from Barbalat’s Lemma [7], we can
claim that _V ! 0) �e! 0. Taking derivative of Eq.(22),
we can show that��e is bounded) _�e is uniformly continous
) _�e! 0. Therefore, from Eq.(22) we can argue that

�
Y
T
m Y
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� � e�e�u
�
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By definingYT
mu ,

�
Y
T
m Y

T
u

�
, we can verify that

Y
T
mu is a persistently exciting (PE) regressor vector [7]

since

�2I �
Z t+To

t

YmuY
T
mud� � �1I

where�1, �2, and To are positive constants andI is
a 2n+3 by 2n+3 identity matrix, we can conclude thate� ! 0 and e�u ! 0. Thus, the PE condition ofYT

mu,
guaranteeŝa0, âi andb̂i for i = 1; : : : ; n andp̂ andq̂ all
to converge to their true values andx to converge to the
origin. It should be noted that this PE condition is satis-
fied only because of the bias current excitation described
in Eqs. (13-14).

TABLE 1 : Parameters for Simulation

Gains: � = 400 s�1, c = 1200 kg=s
� = diag(1:4; 3; 3; 3; 3)� 10�7m=N
�u = diag(3; 3)� 10�5m=N

IC’s: x(t = 0) = �100�m=s
_x(t = 0) = 0

�̂(t = 0) = 0, �̂u(t = 0) = 0

SRO: a0 = 2:5�m
a1 = 18:35�m, b1 = 4:92�m
a2 = 1:77�m, b2 = 1:77�m

Unbalance: p = 86:6�m, q = 50:0�m

SIMULATION RESULTS
Simulation results are presented in Figs. 3, 4 and 5 to
demonstrate the effectiveness of the Variable Magnetic
Stiffness approach. For simulation, we used the nonlin-
ear plant model in Eqs.(1) and (2), parameters in Tables
1 and 2 and the rotor angular speed of1500 rpm. The
SRO identification was performed for up to the second
harmonic only. In the simulation, we turned on the bias
current excitation at time interval5 < t < 35 s using an
amplitude of0:2A and frequency of10Hz.
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FIGURE 3: Geometric centerx and sensor signal with
runoutxs

As seen in Fig. 3, fort < 5 s, the geometric center oscil-
lates with constant amplitude due to sensor runout and un-
balance. Without bias current excitation, Fig. 4 indicates
that fort < 5 s the estimated parametersâ1, b̂1, p̂, andq̂
converge to arbitrary values whilêa0, â2 andb̂2 converge
to to the true values. After we turned on the bias cur-
rent excitation, the parametersâ1, b̂1, p̂, andq̂ converge
to the true values within30 s which results to the stabi-
lization of the geometric center about the origin shown in
Fig. 3. During the excitation, in Fig. 4 we can observe
a diminishing slight fluctuation of the parametersâ0, â2
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FIGURE 4: Estimated Fourier coefficients; dotted lines
are the true values
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FIGURE 5: Top and bottom bias currents

andb̂2 about the true values. As shown in Figs. 3 and 4,
after all parameters have converge to the true values i.e.
t > 35, turning off the excitation has negligible effect.
The geometric center remains at the origin and the esti-
mated parameters stay at the true values. Turning off the
exitation at this time has an advantage of reducing efforts
in the power amplifier as seen in Fig. 5.

EXPERIMENTAL VALIDATION
Experimental Setup and Procedure
The magnetic bearing test rig shown in Fig. 6 was set
up to validate the effectiveness of the Variable Mag-
netic Stiffness approach. The parameters of the half-rotor
assembly and bearing and the operating conditions are
shown in Table 2.
The rotor shaft is60:2 cm long and2:5 cm in diameter. At
the midspand of the shaft, we placed a balanced disk that
allowed trial weights to be attached. We anticipated that
in this arrangement, the shaft’s first flexible mode occured
at 450Hz, which was six times higher than the closed-
loop magnetic bearing control bandwidth. We used an
8-bit absolute-analog encoder to track the angular posi-
tion of the rotor and provide the value of� = ! t. The

TABLE 2 : Magnetic Bearing Test Rig Parameters

Parameter Value

Rotor mass,m 2:43 kg
Electromagnetic

force constant,k 2:82� 10�6Nm2=A2

Nominal air gap,l 0:508� 10�3m
Top bias current,i�10 2:41A
Bottom bias current,i�20 2:06A
Actuator gain,K�

c 97:71N=A
Magnetic stiffness,K�

s 4:33� 105N=m

encoder was attached to one end of the rotor shaft using
a torsionally rigid coupling as shown in Fig. 6. The cou-
pling, however, is axially flexible and allows lateral mis-
alignments such that it does not introduce additional ra-
dial force to the rotor shaft. A closed-loop circuit consist
of an optical speed sensor, a proportional controller and
an AC motor was used to maintain a constant rotor angu-
lar speed.

Bearing A Bearing B

Abs.
Encoder

Torsionally
Rigid Coupling

Motor

Balanced Disk
Rubber
Coupling

Rotor
Shaft

Stator Housing
Speed Sensor

FIGURE 6: Magnetic bearing test rig schematic

The adaptive control algorithm was implemented in
Matlab/SimulinkTM environment and downloaded to a
DSP board, manufactured by dSPACE. The DSP board,
sampling approximately at13kHz, was used to control
the rotor alongx axis in bearing A. Thus, the adaptive
control verification was performed on one axis only. The
remain three axes including the two axes in bearing B
were controlled by analog PD controllers. The electro-
magnets were driven by switching amplifiers, a product of
Advanced Motion Control, operating with1:6 kHz band-
width.
In our experiment, we did not need to provide an addi-
tional SRO to the system since the runout was already
considerably substantial. We utilized a separate DSP that
sampled at5 kHz and analog circuits to generate the ge-
ometric center signal based on the pre-determined SRO.
Thus, the trajectory of the geometric center was recov-
ered and used to evaluate the performance of the adap-
tive algorithm. Our manual identification of the SRO re-
vealed that the first harmonic component of the SRO was
highly dominant in all axes. However, we assumed that
the SRO effect from other axes to the axis being evaluated
to be small since they were compensated using the pre-
determined SRO. In the x axis, the first harmonic com-
ponents of the SRO were found to bea1 = 13:5�m and
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b1 = 0�m.
We set the adaptive control to identify up to the first har-
monics for the SRO in thex axis. We initially levitated
the rotor by setting the adaptation gains� and�u, the
excitationÆ1, and the estimated parameters�̂ and�̂u all
to zero. At this time, thex axis was equivalent to being
controlled by a simple PD controller with� = 400 s�1,
c = 1200 kg=s and _� = 0. In controller implementa-
tion, the derivative of the estimated position signal,_�x,
was numerically computed using the transfer function
2500=(s + 2500). We then increased the rotor angular
speed from 0 to 1500 rpm. After the speed stayed constant
at 1500 rpm, we started the adaptation by switching the
adaptation gains to� = diag(1:4; 3:0; 3:0)� 10�7m=N ,
and�u = diag(3; 3) � 10�5m=N . During this adapta-
tion, we excited the system withÆ1 having an amplitude
of 0:2A and frequency of10Hz. After the estimated pa-
rameters reached steady state values, we simultaneously
set the adaptation gain to zero and stopped the excitation
on the bias currents. We ran this experiment two times and
recorded the final value of the estimated parameters at the
end of each experiment. We then stopped the rotor and re-
peated the above procedure after placing a trial weight of
10 g on the balanced disk. We ran this experiment twice
to verify the consistency of the results.

Experimental Results
The steady-state values of the estimated parameters from
the four experiments are tabulated in Table 3. Usingâ1
and b̂1, we computed the magnitude and the phase angle
of the first harmonic of SRO, and included the results in
Table 3. Similarly, we show the magnitude and the phase
angle of the unbalance, knowinĝp andq̂.

TABLE 3 : Steady-State Values of Estimated Parameters
in Experiment

Nomt With mt

Exp.1 Exp.2 Exp.3 Exp.4

SRO:
â0 -2.1 -1.4 -2.0 -2.8

â1 16 16 15 13
b̂1 0.68 1.0 -0.67 -0.7

Magnitude 16.0 16.0 15.0 13.0
Phase (o ) 2 2 358 358

Unbalance:
p̂ 76 82 130 120
q̂ -26 -23 -8.1 -9.5

Magnitude 80.3 85.2 130 120
Phase (o ) 251 254 266 267

Note: all dimensions in�m , except otherwise mentioned

We present in Fig. 7, the snapshots ofx andxs from ex-
periment 3 to show five regions: 1) without adaptation at

t < 0 s, 2) initial adaptation at0 < t < 0:3 s, 3) during
adaptation att1 < t < t1 + 0:3 s, 4) end of adaptation
t2� 0:3 < t < t2 s, and 5) after adaptationt > t2. In this
particular experiment,t1 andt2 were taken at about60 s
and110 s respectively. It can be seen that the geometric
centerx initially fluctuated with an amplitude of15�m
about the mean value of5�m. At t = 0 s we started the
adaptation together with the excitation of bias currents.
It can be observed that withint2 seconds the fluctuation
in the geometric center has been reduced by 95 percent.
Turning off the adaptation and excitation att = t2 re-
sulted to even smaller fluctuation inx.
Due to our hardware limitation, we acquired the time
traces of estimated parameters in a separate experiment.
The time traces of estimated parameters obtained from ex-
periment 4 are shown in Fig. 8. It can be observed that
the estimated parameters converge to steady-state values
within 110 seconds. During the transient the SRO param-
eters oscillates with amplitude less than3�m. The varia-
tion in the DC component is negligible.
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The experimental results indicate that the first harmonic
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components of the SRO in Table 3 have an average mag-
nitude of15�m and phase angle of0o. The variation in
the magnitude and phase angle can be considered very
small: within�10 percent in magnitude and�2o in the
phase angle. The experiments suggest that adding trial
weight does not affect the first harmonic components of
SRO. Thus, the experiments confirm the consistency of
our plant model. It also can be seen that the results are
very close to the pre-determined SRO:a1 = 13:5�m and
b1 = 0.
To verify the consistency of the results in the unbalance
components, we may use a vector diagram. For example,
using the vector diagram in Fig. 9 we can calculate the
resultant unbalance force~AR and compare to the experi-
mental results in Table 3. We may define the initial unbal-
ance as~Au using the results of experiments 1 and 2 shown
in Table 3. Using the average, we getj ~Auj = 82:75�m
and �u = 252:5o. Knowing the location and the mass
of the trial weight we can find~At and ready to calculate
~AR = ~Au + ~At. From the physical and geometric data,
our particular set-up yieldsj ~Atj = 60�m and�t = 289o.
Thus we can obtainj ~ARj = 136�m and �R = 268o

which are very close to the experimental results in exper-
iments 3 and 4 shown in Table 3.

ε
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rotor
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y x
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y x
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At = trial weight vector

AR = resultant vector

Au = initial unbalance vector

θR

FIGURE 9: Verification using a trial weight

CONCLUSIONS
We have presented a new adaptive algorithm that can
uniquely identify the harmonic components of sensor
runout and unbalance. Both simulation and experimen-
tal results confirm that the approach can significantly im-
prove the performance of a magnetically levitated rigid
rotor by means of precise rotation about the geometric
center.
The adaptive algorithm provides several advantages.
First, the identification process can be performed with-
out changing rotor angular speed. Secondly, in imple-
mentation the algorithm does not require extra hardware
except an additional D/A channel to drive the top and bot-
tom coils separately. Moreover, the algorithm allows us
to turn the adaptation on and off when necessary without
problem.
Future work should consider the effect of uncertainty
on plant parameters.Robustness of the algorithm to rotor

flexible modes should also be investigated. Extending the
approach for a centralized magnetic bearing control sys-
tem and the use of the approach in tandem with perfor-
mance index minimization may also be valuable.
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