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ABSTRACT 
In this paper, we propose a new identification method 
of the sensor runout and the unbalance on a rigid rotor 
supported by active magnetic bearings applying the 
incremental least square on-line method and perform 
some numerical simulations on the their identification 
applying to a rigid rotor model of a turbo-molecular 
pump.  The paper also presents some results on the 
identification accuracy and effects of the rotor model 
error.  From the numerical simulations we conclude 
that the proposed identification method is effective for 
the simultaneous identification of the unbalance of rotor 
and the sensor runout. 

 
INTRODUCTION 
An active magnetic bearing(AMB) is non-contact, 
frictionless and has the ability to actively control the 
bearing force and the journal eccentricity in the bearing. 
The application of AMB also has a possibility to 
compensate the mass unbalance on the rotor. 
Two methods are generally adopted to reduce the 
unbalance vibration of the rotor levitated by AMB.  
One method is called the peak-gain method (PG 
method), in which the feedback gain of the AMB 
controller is extremely high only at the rotating speed 
frequency.  Another method is called the feed 
foreword method (FF method)(1), in which the 
unbalance on the rotor is estimated from the measured 
vibration signals by the AMB proximity sensor and a 
compensating magnetic pull from the AMB is added to 
the rotor in opposite direction of the unbalance force so 
as to cancel out the mass unbalance force.  The FF 

method is better than the PG method from a viewpoint 
of the system stability. But it is essential to estimate the 
unbalance correctly for the FF method. If there is any 
error in the unbalance estimation, unbalance vibration 
remains in proportion to the estimation error.  
    In a magnetically levitated rotor by AMB eddy 
current type proximity sensors are usually employed to 
measure the clearance between rotor and stator. 
Since the eddy current type proximity sensor is 
sensitive to circumferential irregularity of conductivity 
and permeability of sensor target material on the rotor, 
the sensor output signal contains components 
proportional to the circumferential irregularity and the 
shaft displacement. 
 The sensor output caused by the circumferential 
irregularity is called electrical sensor runout(2).   The 
proximity sensor runout enters into the control circuit 
of the AMB and then the magnetic pull induced by the 
runout signal whirls the rotor which is supported by the 
AMB just as an unbalance on the rotor does. And 
moreover the undesirable sensor runout saturates the 
control current from the power source. 
It is necessary for realization of minimal rotor whirl by 
the FF method to identify the sensor runout and the 
unbalance at the same time, compensate the unbalance 
force by the FF method and eliminate the sensor runout 
from the measured proximity signal of the AMB 
simultaneously. It is recommended for minimization of 
the control current to use the modified proximity signal 
without the runout for the AMB levitation control. 

 
 

EQUATION OF MOTION OF RIGID ROTOR 
SUPPORTED BY ACTIVE MAGNETIC 
BEARINGS 
A simple AMB model is shown in figure 1. AMB 
levitates a rotor by regulating the current in magnetic 
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coil and hold the bearing clearance (gap) constant. An 
attractive force from AMB is linearized with respect to 
the control current i and the gap change xas follows: 

GxFif +−=                           (1)  

where  
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GF, are called AMB control stiffness and negative 

position stiffness respectively. 
 

FIGURE 1:  A Model of Active Magnetic Bearing 
 

In this paper, we try to identify the unbalance and the 
sensor runout on a rotor of a small turbo-molecular 
pump levitated by AMB, of which photograph is shown 
in figure 2.   
In order to make a numerical model of AMB, the 
transfer function of the controller has been measured 
and approximated with PID type controller which is 
represented as Equation (2) and the measured and the 
estimated transfer functions are shown in figure 3. The 
solid line and the dotted line represent the measured 
transfer function and the approximated one. The 
estimated PID gain is also tabulated in table 1                                                     

∫ ++=
dt

xd
kdtxkxki DIP

�

��

       (2)         

The rotor of the turbo-molecular pump is levitated by 2 
AMBs and has a massive cylinder with rotor blades on 
the top end. Now the cylinder is replaced by a disk for 
the convenience of the verification experiment of the 
proposing identification method. The tested rotor is 
drawn in figure 4. 
Equation of motion of the rigid rotor shown in figure 4 
and levitated by 2 AMBs is given as following 
equation. 

is UGxFixMxM =+++ ��� 1ω         (3) 

where ixxx ,,, rs  are the actual rotor displacement 
vector, the measured displacement vector at AMB 
sensor, the sensor runout vector and the AMB control 
current vector. 
 

TABLE 1: Estimated control gain of AMB from 
measured transfer function 

 Bearing 
1 

Bearing 2 

(A/m) pk  7810 6950 

( )A/ms Ik  98300 49300 

( )As/m Dk  9.83 4.4 

 
                                                     

 

 
FIGURE 2: Photograph of the turbo molecular pump 

rotor 
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FIGURE 4:  Rotor Model of Turbo-molecular Pump 
 (1,2,5,6 indicate the upper bearing in x direction and 
y-direction and the  the lower bearing x-direction and 
y-direction respectively. G is the center of gravity of the 
rotor) 
 

GFUMM ,,,, 1 i  are the mass matrix, the 

gyro-moment matrix, the rotor unbalance matrix, the 
control stiffness matrix and the negative position 
stiffness matrix . 

[ ]Tyxyx θθ=x , [ ]Ts xxxx 6521=x  

[ ]Trrrrr xxxx 6521=x , [ ]Txxxx 6521 ˆˆˆˆˆ =x  

[ ]Tiiii 6521=i ( )dd,Im,m,Idiag=M
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 rs xxx +=ˆ                            (4)  

The shaft displacement at the center of gravity and the 
sensor position of the AMBs is given from the 
geometrical relation of the shaft as follows: 

( )rs xxLLxx −== ˆ                      (5)        
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As we have assumed  the controller of the AMB to be 
the PID controller, the control current of the AMB are 
described as follows:                                      

∫++= dtIPD xKxKxKi ˆˆˆ�                   (6)            

where 
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Now we adopt the estimated values in table 1 as 
the controller gain ( )6,5,2,1 ,, =iKKk IiPiDi . 

Substituting equations (4)(5)(6) for ixx ,,s of  

equation (3), we obtain a following equation of motion: 
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where ( )PdPd IIIImm −−= ,2 ,,diagM  

φε ,  are mass eccentricity and its phase, ψτ ,  are 

inclination of the central principal axis of inertia and its 
phase and ω  is rotating speed. 
The sensor runout vectorrx  is represented as follows: 
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where φλ,  are the synchoronous components of the 

sensor runout and their phases and subscripts 1,2 
identify 2 radial bearings. 

 
 

IDENTIFICATION METHOD  
The identification method is as follows: 
(1)Laplace tramsforms of the Equation of motion 
Taking Laplace transforms of equation (7), we obtain 
the left-hand term of the equation as  

( ) ( ) )(ˆ1
1

2 s
s

ss PD XFKGFKFKLMML 



 +++++ ω

 
                                      (10a) 
where [ ]•L is the Laplace transforms and 

)(ˆ)ˆ( sL Xx = . 
The right-hand term of equation (7) by the Laplace 
transforms is given as follows: 
 
First term of the right-hand term 
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0  is 44× zero matrix. 
Second term of the right-hand term 
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where ( )1,1,1,1diag=nI  
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Third term of the right-hand term  
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Fourth term of the right-hand term 
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In the end, we obtain the Laplace transforms 
of equation (7) as follows: 
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(2) Discrete-time system from continuous time 
system using the Bilinear z transformation 
Substituting equation (12) to equation (11) to take the 
bilinear z transform of equation.(11) , we obtain the 
equation in the z plane as equation (13): 
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T   is the sampling period 
As z is unit delay, following relations are given:     
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Substituting the upper equations to equation (13), we 
obtain the equation in the discrete-time system 

)3(ˆ)2(ˆ)1(ˆ)(ˆ 3210 −+−+−+ kkkk xWxWxWxW                   

[ ]EUUUU )3()2()1()( 3210 −+−+−+= kukukuku  (14)      

Replacing the left-hand term and the parenthesized 
term in the right-hand term of equation (14) by 

( ) ( )kk UW ,  and substituting ( ) ( )kk UW ,  to equation 
(14), we obtain equation (15). 

)3()2()1()()( 3210 −+−+−+= kkkkk xWxWxWxWW

)3()2()1()()( 3210 −+−+−+= kukukukuk UUUUU

( ) (15)                                         1  )()( nkkk �== EUW              
In equation (15), the left-hand term ( )kW is 

determined from the dynamic parameters of the rotor 
and AMB, the sampling period and the measured shaft 
displacement including the sensor runout and also the 

( )kU  in  the right-hand term  is determined from the 

dynamic parameters of the rotor and AMB, the 
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sampling period and the rotating speed. E  is a 
unknown vector, of which element are unknown 
unbalance and sensor runout and be identified by the 
incremental least-square method. 
(3) the incremental least-square method 
As we may use n sets of ( ) ( ) ( )nkkk �1  , =UW  and 

get 4n equations in equation (16) to identify the 
unknown vector E  so that we employ the incremental 
least-square method to estimate the unbalance and the 
sensor runout. 

UEW =                                  (16)                                                            
where 

( ) ( ) ( )[ ]TnWWWW �21=

( ) ( ) ( )[ ]TnUUUU �21=  

In order to minimize the estimation error, a following 
quadratic cost function J is introduced and E is 
determined by minimizing the cost function J . 

RRTJ =  
where  UEWR −=  is the estimation error. 
Its minimum satisfies  
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( ) WUUUE TT 1−
=  

provided of course the inverse ( ) 1−
UU T  exists. 

The incremental least square on-line method is applied 
to identify. The incremental least square on-line 
algorithm (3)(4)  is given as follows: 
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IDENTIFICATION TEST RESULTS USING 
SIMULATION DATA  
Numerical simulation of the rotor vibration excited by 
the unbalance including the measurement error caused 
by the AMB sensor runout is carried out to evaluate the 
proposed method for estimation of the unbalance and 
the sensor runout on the rotor. The Runge-Kutta method 
is employed and the condition of the numerical 

simulation is tabulated in table 2. 1000 data on the rotor 
displacement are calculated at each bearing at 500rpm 
and 1500rpm. Sampling period is set to be msec7.1 . 
The calculated vibrations at both bearings are shown in 
figure 5. The abscissa shows sampled data number 
The unbalance and the sensor runout are identified by 
the algorithm expressed in equation (17), using the 
simulated vibration data.  The convergent process of 
the identification of the unbalance and the sensor 
runout is shown in figure 6. In this figure, the left side 
figures and the right side figures show the amplitude 
and the phase angles of the unbalance and the sensor 
runout respectively. Solid lines indicate the identified 
values of the identifying parameters and dotted straight 
lines are given values, namely static unbalance 

TABLE 2: Condition of numerical simulation 
 Rotating 

speed(rpm) 
Sampling 
period(ms) 

Number 
 of data 

First data 500 1.7 500 
Second data 1500 1.7 500 
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FIGURE 6: Identification process using the numerical 
 simulation results
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�P0.2=ε , coupled unbalance rad106.0 4−×=τ , 

sensor runout of bearing 1 m1.11 µλ =  and sensor 

runout  of bearing 2 m2.22 µλ = . 

Just after a change of the rotating speed from 500rpm to 
1500rpm, all gains and phase angles of the identified 
parameters converge to the given values rapidly. From 
this numerical result, we confirm that the unbalance and 
the sensor runout on the AMB rotor must be identified 
by the proposed rotor model and the incremental 
least-square method. 
 
 
EFFECTS OF MODEL ERRORS ON 
IDENTIFICATION  ACCURACY  
Following the numerical identification test of the 
unknown parameters by using the known dynamic 
model of the rotor-AMB system and the simulated 
vibration data, we investigate effects of model errors of 
the rotor-AMB system on the identification accuracy. 
The errors of control gains of the AMB are taken into 
consideration as the model errors and the numerical 
identification tests have been carried out. 
In the identification test, static and dynamic unbalances 

are set at �P6.37 and rad1018.9 6−× , and the control 

gains in the numerical identification are changed in the 
range of 30± % of them in the numerical simulation of 
the rotor unbalance vibration. 
Figure 6 & 7 show the numerical identification results 
of the static unbalance and the dynamic unbalance. 
Figure 6 shows that the estimation error of the static 
unbalance is below 2% even if the gain of the AMB 
regulator is estimated with 30% error and figure 7 also 
shows that the estimation error of the dynamic 
unbalance is below 0.2% even if the gain of the AMB 
regulator is estimated with 30% error 

 
CONCLUSIONS 
  We have developed the equation of motion of the 
rigid rotor supported by active magnetic bearings  in 
consideration of the static and coupled unbalances and 
the sensor runout and proposed the a identification 
method of the unbalance and the sensor runout 
simultaneously.  
The numerical simulations carried out here on 
unbalance response of the rotor have shown that the 
proposed method is effective for  identifying the 
unbalance and the sensor runout on the AMB rotor. 
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FIGURE 6: Variation  of Estimated Static Unbalance by 
Model Errors 
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FIGURE 7: Variation  of Estimated Dynamic 
Unbalance by Model Errors 
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