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method is better than the PG method from a viewpoint
of the system stability. But it is essential to estimate the
unbalance correctly for the FF method. If there is any
error in the unbalance estimation, unbalance vibration
ABSTRACT remains in proportion to the estimation error.
In this paper, we propose a new identification method In a magnetically levitated rotor by AMB eddy
of the sensor runout and the unbalance on a rigid rotogurrent type proximity sensors are usually employed to
supported by active magnetic bearings applying themeasure the clearance between rotor and stator.
incremental least square on-line method and performsince the eddy current type proximity sensor is
some numerical simulations on the their identification sensitive to circumferential irregularity of conductivity
applying to a rigid rotor model of a turbo-molecular and permeability of sensor target material on the rotor,
pump. The paper also presents some results on thghe sensor output signal contains components
identification accuracy and effects of the rotor model proportional to the circumferential irregularity and the
error.  From the numerical simulations we conclude shaft displacement.

that the proposed identification method is effective for The sensor output caused by the circumferential
the simultaneous identification of the unbalance of rotorjrregularity is called electrical sensor ruf@ut The
and the sensor runout. proximity sensor runout enters into the control circuit
of the AMB and then the magnetic pull induced by the
runout signal whirls the rotor which is supported by the
INTRODUCTION AMB just as an unbalance on the rotor does. And
An active magnetic bearing(AMB) is non-contact, moreover the undesirable sensor runout saturates the
frictionless and has the ability to actively control the control current from the power source.
bearing force and the journal eccentricity in the bearing.It is necessary for realization of minimal rotor whirl by
The application of AMB also has a possibility to the FF method to identify the sensor runout and the
compensate the mass unbalance on the rotor. unbalance at the same time, compensate the unbalance
Two methods are generally adopted to reduce thdorce by the FF method and eliminate the sensor runout
unbalance vibration of the rotor levitated by AMB. from the measured proximity signal of the AMB
One method is called the peak-gain method (PGSimultaneously. It is recommended for minimization of
method), in which the feedback gain of the AMB the control current to use the modified proximity signal
controller is extremely high only at the rotating speed Without the runout for the AMB levitation control.
frequency.  Another method is called the feed
foreword method (FF methdd) in which the
unbalance on the rotor is estimated from the measureQUATION OF MOTION OF RIGID ROTOR
vibration signals by the AMB proximity sensor and a SUPPORTED  BY  ACTIVE  MAGNETIC
compensating magnetic pull from the AMB is added to BEARINGS
the rotor in opposite direction of the unbalance force soA simple AMB model is shown in figure 1. AMB
as to cancel out the mass unbalance force. The Fievitates a rotor by regulating the current in magnetic
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coil and hold the bearing clearance (gap) constant. AnTABLE 1: Estimated control gain of AMB from
attractive force from AMB is linearized with respect to measured transfer function

the control currenti and the gap chang& as follows: Bearing Bearing 2
f =-Fi+Gx B 1
where Kk, (A/m) 7810 6950
_ oSN Q ipo , ino k, (A/ms) | 98300 49300
4 gxpo Xno? 5 ko (As/m) | 9.83 4.4

G= HoSN? E'Po 'No E

4 Expo XNo @
F,G are called AMB control stiffness and negative
position stiffness respectively.
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FIGURE 1: A Model of Active Magnetic Bearing
In this paper, we try to identify the unbalance and the

sensor runout on a rotor of a small turbo-molecular
pump levitated by AMB, of which photograph is shown

in figure 2. FIGURE 2: Photograph of the turbo molecular pump

In order to make a numerical model of AMB, the rotor
transfer function of the controller has been measured
and approximated with PID type controller which is

represented as Equation (2) and the measured and the  30[ '
estimated transfer functions are shown in figure 3. The 2ot
solid line and the dotted line represent the measured g -
transfer function and the approximated one. The = 10[
estimated PID gain is also tabulated in table 1 &

_ R R dx
i= X+ lq_[xo|t+k,3E 2 -10[

T T T

Bearim 1

0dB=22(kA/m)

L ! L
10 100 1000

The rotor of the turbo-molecular pump is levitated by 2 1

AMBSs and has a massive cylinder with rotor blades on Frequency(Hz)

the top end. Now the cylinder is replaced by a disk for 30 l ' ' '
the convenience of the verification experiment of the N Bearirg 2
proposing identification method. The tested rotor is 3 201 0dB=22(kA/m)

drawn in figure 4. £ 10

Equation of motion of the rigid rotor shown in figure 4  © >

and levitated by 2 AMBs is given as following ol

equation. -10 . . .
MX +aM X +Fi +Gxs =U; 3) 1 10 100 1000

wherex,x,,X,,i are the actual rotor displacement

vector, the measured displacement vector at AMB —— Measured function |

sensor, the sensor runout vector and the AMB control

current vector. FIGURE 3:

function
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As we have assumed the controller of the AMB to be

DumMM Zé the PID controller, the control current of the AMB are
rotor Y b described as follows:
Bearingl—== 5 i =KpX+KpX+ K,Iidt (6)
. 1/ <>'1/ y where
| Ul G A K p= diafK p; K ps K ps K ge) K p= diagK py, K pp, Kps, Kpg)
Motor - K = dia@(Kl K2 K5, KIG)
X - I Now we adopt the estimated values in table 1 as
[ | 2 the controller gaink; Kpi K (i = 1256).
Bearin Substituting equations  (4)(5)(6) forxg,X,i of
42> 5 equation (3), we obtain a following equation of motion:
/ MLX + (M 4L +FKD)§+(FKP+G)>2+FK,J‘>2dt
=U, +MLX, +wM,Lx, +Gx, 7

The unbalance matribJ; is represented as follows:
e cos(wt + qo) O
Essin(&l +(p) E

2B 7sin(at +)0
O codt +)

M,M,U,F,G are the mass matrix, the Where M,=diagmm.l 4=1plg4-1p)

gyro-moment matrix, the rotor unbalance matrix, the £,¢ are mass eccentricity and its phasgy are
control stiffness matrix and the negative position inclination of the central principal axis of inertia and its

FIGURE 4: Rotor Model of Turbo-molecular Pump

(1,2,5,6 indicate the upper bearing in x direction and
y-direction and the the lower bearing x-direction and
y-direction respectively. G is the center of gravity of the
rotor)

U, =w?M (8)

stiffness matrix . phase andw is rotating speed.
X = [x y 6, Gy]T , Xg = [x1 Xo  Xg xe]T The sensor runout vectgy is represented as follows:
T o_[x2 2 o oT

x =% % X %] .%=[% % % % SMCF)S&II+Q))E
: S . sin(axt +
iz, i, is ig]" M =diagmm,p.ly) X, = E;l d @ )E (9)

O 0 00 R O R 00 2CONM+
L.Po o og_ Ho ko R [Azsin(at +@,)g

"o o 1,00 "0o -F4, 0 F4,0 where A,@ are the synchoronous components of the
O O . .
B) 0 -1, 0f L, 0 -Fd, op sensor runout and their phases and subscripts 1,2

identify 2 radial bearings.

0-G 0 -G 0 O
. g0 -G 0 -Gp
00 G4, 0 -Gg,0
Ocy, o ol o ° IDENTIFICATION METHOD
! , z The identification method is as follows:
E ”‘5‘"20?5(““‘1’) S (1)Laplace tramsforms of the Equation of motion
U =g Mmw sinf@t +¢) [ Taking Laplace transforms of equation (7), we obtain
B (g1 sinfat +y) the left-hand term of the equation as
-1, Yw? codat + .
Bla-toxieodard)g s+ (0. 4P o)+ (K, +6)+ P SR (9
X =Xg + X, (4) S
The shaft displacement at the center of gravity and the (10a)

sensor position of the AMBs is given from the where |_[.] is the Laplace transforms and
geometrical relation of the shaft as follows: L(X) = )2(5)

X =Lx, =L(X-x 5
® 0 ( 0 rl) o0 ©) The right-hand term of equation (7) by the Laplace
2 L0 transforms is given as follows:
1 01, 0
L= 0

i+, 00 -1 0 10 First term of the right-hand term
ol 0 -1 0g
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0 &(scosp-wsing) O In the end, we obtain the Laplace transforms
U= Mzgg(wcos(pJ,ssiW) g of equation (7) as follows:
s+’ Erlwcosy + ssing )] E\/ILSZ (ML +FK o)+ (FKp +G)+ FK, %((s)
Dr(scoszp —wsinw) 0
=M ,|H oy + W?H o, JU(S)E
oo e Ut (10b) = [H.(©)s+ H, @)U E
where 11)
U(s) = Lfsin(at)] = 52— where
s“+w _ 1
CF cosgO (A, cosg, [ H (0)=aM B ot @MLH 13+ M LH 21+BGH31
_Fol) :Efsinfpg E :Bhsinrpl% H ,(w)=w™M H g +@w?MLH 1, + @?M JLH ,,+GH,
HEH T GoosyD' ' DA, cosp, (2) Discrete-time system from continuous time
7sing %\2 sing, O system using the Bilinear z transformation
0100 0 O 00 -1 0 0 O S'u.bstituting equation (12) to gquation (11) to tgke the
DO 10 o O 0, 0 o0 o O bilinear z transform of equation.(11) , we obtain the
Hop = D B Hop = B OE equation in the z plane as equation (13):
Q0o - Jo o -1 00 5:2(1— Z—l)/T@+Z—l) (12)
0 01 0 00 0 0 -1

(W, + W, 28 +W, 22 +W, 72X (2)

(13)
_[U +U; 74U, 72 +U,z ]U(z)E

0 is 4x4zero matrix.
Second term of the right-hand term

OAy(scosg, - wsing,) O where
VLR, = =9 LE,/\l(wcos(pl +ssing )5 W = 8L + 4T(M 1L +FK o Jr 2T*(FK p +G)+ T°FK
"2+ w2 Dhy(scosp, —wsincoz)g (W, =-2ML - 4T(M L +FK ; }+ 2ZT2(FK » +G)+3T°FK
o(wcosp, + ssing, )y [W, = 24ML - 4T(M ,L +FK - 2T?(FK p +G)+3T°FK
= M'—[&H u +w2H12]U (8 (10¢) W = 8ML + 4T(M L +FK p ) 2T2(FK p +G)+T3FK

where In:diag(l,],],l)
Ooo0 1 0 od o
O_ 0 )=
Hllzb _|n]’H12: L9900
0 0 0 10

5o 0-1o08

B o= 4H 1 (w)+ 2T%H (W)U =-4TH () + 2T?H ()
-4H 1(‘*’)‘ 2TH 2(‘*’)1U 3= 4TH 1(‘*))‘ 2T2H 2(‘*))

T is the sampling period
As Zis unit delay, following relations are given:
Third term of the right-hand term

_i - — -2 i
D—/\l(a)COS(pl+ ssingol)D z _ X (2 =X (2) = x(k —i)
i _ : ,
E)\ (scosp, - wsing,) E Z U (2 =U(9=u(k-i)
M1 L[.;_A (wcos<p2 +ssinqa2)D Substituting the upper equations to equation (13), we

2
, W
M LL[%,]= 7, 2
. obtain the equation in the discrete-time system
DAz(scosp, - wsing,) o Wo X(K) + W, X(K—1) + W, X(k - 2) + W5k (k - 3)

=M L[$H 5 +aH 5, JU § (10d) =[U o UR+U, u(k- I+ U uk- 2) +Uzuk -3)]E  (14)
where H ,=-H 5, Hp=Hyy Replacing the left-hand term and the parenthesized
Fourth term of the right-hand term term in the right-hand term of equation (14) by
Ay (scosp, - wsing,) O W (k),U(k) and substitutingw (k),U (k) to equation
oLx ]= 1 GE/\l(wCOS(pl+SSin(pl)E (14), we obtain equation (15).
52402 D\Z(SCOS(pz—wSinqoz)D W (k)= Wy x(k)+ W, x(k—=1)+W,x (k- 2) +W;x(k —3)
H(wcosp, + ssincpz)g U (R=U o URK+U u(k=11U,u(k-2)+Ujuk -3)
- W kEU kE)(k= -an) (15)
=G Hat Hazél' $F (10e) In equation (15), the left-hand termw(k) is

determined from the dynamic parameters of the rotor
and AMB, the sampling period and the measured shaft
displacement including the sensor runout and also the
U(k) in  the right-hand term is determined from the

dynamic parameters of the rotor and AMB, the

where H 5=p 1,],Hap=Hy
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sampling period and the rotating speel is a Ix10fF T — T
unknown vector, of which element are unknown 5fBearingl E
unbalance and sensor runout and be identified by the O§ AWM
incremental least-square method. = 500pm 1500rpm E
(3) the incremental least-square method N SR S — TR S I

As we may use n sets o (k),U(k) (k=1.--n) and 0O 200 400 600 800 1000

get 4n equations in equation (16) to identify the
unknown vector E so that we employ the incremental
least-square method to estimate the unbalance and tr

IXI0 T 71 T E
FBearing2 E

= PVVANNAAANNNANA
0 W 3

Displacement(m)
)]

sensor runout. 5- 500rpm 1500rpm 3
V\%e:rgE (16) 0 2(|)o | 4(;0 6(I)0 | 8(I)0 .10—00
w=[w@) w@) - w) Nunber of Data

=[U (1) U(2) U(n)]T FIGURE 5: Time series data of calculated moto

- o . displacement
In order to minimize the estimation error, a following

quadratic cost functionJ is introduced andE is simulation is tabulated in table 2. 1000 data on the rotor
determined by minimizing the cost functiod. displacement are calculated at each bearing at 500rpm
J=R'R and 1500rpm. Sampling period is set to Hemsec
The calculated vibrations at both bearings are shown in
figure 5. The abscissa shows sampled data humber
The unbalance and the sensor runout are identified by

where R=W —-UE is the estimation error.
Its minimum satisfies

9 =-20'W+2UTUE =0 the algorithm expressed in equation (17), using the
oE ) , simulated vibration data. The convergent process of
» which gives the identification of the unbalance and the sensor
E= (UTU)_luTW runout is shown in figure 6. In this figure, the left side

" figures and the right side figures show the amplitude
provided of course the invers@JTU) exists. and the phase angles of the unbalance and the sensor

The incremental least sguare on-line method is app”edunout reSpeCtively. Solid lines indicate the identified
to identify. The incremental least square on-line values of the identifying parameters and dotted straight

algorithm®® is given as follows: lines are given values, namely static unbalance
E(K = E(k-1)+ P(UT (ka(k) ) .
where x10® é-‘l P !
q() W (k)-U (k)E (k- 1) e ab :
T (m)2.|..|.1.-'.|.|.|.|.
[| +U(KP(k-2U ()] 0 200 400 600 800 0 200 400 600 800
= —1)- - - 4 3 T T T T
P(@ P(k-1- P(k-1uT (K (k)P(k -1) 10 s ;
l ]
v 7 _g 77777 ]
DENTIFICATION  TEST RESULTS USING (a0 0 250 s0 o 200 200 600800
Numerical simulation of the rotor vibration excited by s ST T T T

X 2 __

the unbalance including the measurement error cause
by the AMB sensor runout is carried out to evaluate the A 1

proposed method for estimation of the unbalance ana 0 200 400 600 800 0‘ 200 400 600 800
the sensor runout on the rotor. The Runge-Kutta method
is employed and the condition of the numerical ST T TT T ST ]
x10° of .
. it i i i A2 eI I R e e e A
TABLE 2: Condmorr of numerical §|mulat|0n ’ 0200200 600 800 o 200400 600 500
Rotating Sarpplmg Number Number of Data
speed(rpm) |period(ms) ofdata | ... Given value Identified value
First data 50D 1[7 500 (a) Gain (b) Phase(rad)
Second datal 1500 1.7 goo FIGURE 6: Identification process using the numerical
- simulation results
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£=20um , coupled unbalancer = 06x10™* rad
sensor runout of bearing RA; = (.1 nand sensor

runout of bearing2A, = 22 m (<1099 24— 3

Just after a change of the rotating speed from 500rpm to 59'1 N B/;/rs/ g
1500rpm, all gains and phase angles of the identified So16 e K e
parameters converge to the given values rapidly. From 9.14 :i:ﬁip ]
this numerical result, we confirm that the unbalance and i “xKd 1
the sensor runout on the AMB rotor must be identified 912 —lInitial ]
by the proposed rotor model and the incremental 9.105— _50 . ('J . 2'0 —20

least-square method. Change of gain [%]

FIGURE 7: Variation of Estimated Dynamic

EFFECTS OF MODEL ERRORS ON Unbalance by Model Errors

IDENTIFICATION ACCURACY

Following the numerical identification test of the
unknown parameters by using the known dynamic
model of the rotor-AMB system and the simulated
vibration data, we investigate effects of model errors of CONCLUSIONS

the rotor-AMB system on the identification accuracy. We have developed the equation of motion of the
The errors of control gains of the AMB are taken into rigid rotor supported by active magnetic bearings in
consideration as the model errors and the numericatonsideration of the static and coupled unbalances and
identification tests have been carried out. the sensor runout and proposed the a identification
In the identification test, static and dynamic unbalancesmethod of the unbalance and the sensor runout
are set at37.6umand 918x10°° rad and the control ~ simultaneously.

gains in the numerical identification are changed in the & numerical simulations carried out here on
range of + 3@6 of them in the numerical simulation of unbalance response of the rotor have shown that the

the rotor unbalance vibration proposed method is effective for identifying the

Figure 6 & 7 show the numerical identification results unbalance and the sensor runout on the AMB rotor.
of the static unbalance and the dynamic unbalance.
Figure 6 shows that the estimation error of the static
unbalance is below 2% even if the gain of the AMB
regulator is estimated with 30% error and figure 7 also
shows that the estimation error of the dynamic
unbalance is below 0.2% even if the gain of the AMB
regulator is estimated with 30% error
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