
ABSTRACT*

In this paper, the problem of automated controller
design for AMB systems is addressed for the case of a
rigid rotor with unknown properties that is to be
supported by AMBs with known characteristics.
A two step procedure to solve this problem is
presented. First, the unstable system is identified by a
short sequence of step experiments. In a second step, a
stabilizing controller is designed.

INTRODUCTION
Active magnetic bearings (AMBs) have many
advantages over conventional bearings: contactless
levitation, therefore absence of friction and wear, no
need for lubrications, and very high rotational speeds.
Furthermore, they allow for adjustment of the
damping, system monitoring and fault detection.
However, active magnetic bearings are not as widely
spread in industry applications as these advantages
might suggest. An important reason for this is the
significant complexity of the complete plant in
comparison with plants equipped with conventional
bearings.
While for conventional designs the bearings can be
chosen from a catalogue and standard techniques are
available for connecting the bearings to the rotor, this
procedure is not feasible for magnetic bearings. This is
due to the fact that the controller required for
operating the magnetic bearings critically depends on
information about the rotor that is to be levitated, i.e.
there is no generic controller one could sell with a pair
of magnetic bearings that stabilizes all rotors the
bearing could technically levitate.

* The research is supported by the EU BRITE project
IMPACT (Improving Machinery Performance using Active
Control Technology)

The state of the art approach to solving this problem
consists in making an ‘integral design’ based on a
man-made model of the rotor and the (known) model
of the bearings. This procedure is time consuming and
often involves more than one person.
To improve this situation and to make AMBs ‘out of
the box’-products like conventional bearings, an
automatic startup algorithm capable of designing
controllers for a given pair of magnetic bearings and
arbitrary rotors (with reasonable mass) is required.
In this paper, an algorithm capable of performing this
task for rigid rotors is presented. The algorithm
consists of two parts. First, the parameters of the rotor
model are identified by means of a sequence of step
experiments. In the second step a controller to stabilize
the system is designed.
In correspondence with the problem setting described
above, it is assumed that all information on the
bearings (stiffness coefficients sk and ik , air gap,
clearance, maximum current) is known, and no
information on the rotor (geometry, mass, moment of
inertia) is available. The bearings are assumed to
operate in differential driving mode and are considered
linear.
The paper is organized as follows: First, the problem
is formulated for a single, one-dimensional bearing,
and the analytical solution is presented. Then, the
model is extended to two dimensions. Finally, the
procedure to lift a real rotor supported by two bearings
is described.
At the end of the paper, experimental results obtained
from a test rig are presented.

ONE-DIMENSIONAL CASE
Let us consider a one-dimensional bearing as
schematically depicted in Figure 1, where 0x
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represents the distance from the bearing center to the
magnets, fx denotes the distance from the bearing
center to the retainer bearings, and x denotes the
position of the rotor with respect to the center position.
Let further m denote the mass of the rotor, and sk and

ik the force-displacement and force-current factors of
the bearing for a given bias current i0,ref, respectively.

Identification
With the above notation and i being the bearing
current’s deviation from the bias current, the equation
describing the rotor’s motion can be written as
follows:

s im x k x k i m g⋅ = ⋅ + ⋅ − ⋅rr (1)

In order to design a controller capable of stabilizing
the system, it is necessary to identify the unknown
mass m of the rotor. To this end, the following
experiment is performed. First, the current is switched
off such that the rotor rests at the position fx x= − .
Then, a current step of size sI is applied to the upper
magnet and the rotor is accelerated upwards until it
hits the upper retainer bearing at fx x= .

By applying the Laplace transform considering the
initial condition fx x= − , the rotor’s response to the

current step can be expressed in the frequency domain
as:
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where the first factor of the second term describes the
plant’s transfer function from current to displacement
and the first and third terms stem from the initial

conditions and the influence of gravity, respectively.
Investigation of the second term reveals that the

system is of second order with poles at sk
p

m
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and a static gain of i
plan t
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= − , (4) and (5).

Transformation of (3) to the time domain and scaling
by 1/ fx then yields for the step response of the rotor:
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As can be seen from equation (6), the function
describing the rotor’s path contains the unknown
system pole p as an argument to the cosine
hyperbolicus term. We will now describe a procedure
to determine this parameter and the unknown mass m.

1. Perform a step experiment as described above
with on-line measurement of the rotor’s position.

2. From the time data obtained, extract the moments
of take-off and contact with the upper retainer
bearing.

3. Fit a function of type ( )( ) c o s h ix t a p t c= ⋅ ⋅ −
to the position measurements made during the
flight-phase of the rotor.

The parameter ip resulting from this procedure then
directly yields an estimate for the system’s poles at

.p± Based on ip an estimate for the rotor mass m can
be calculated using equation (4).

Current Step Size. It is important to understand that
in the experiment described above the size of the
current step implicitly defines the operating point of
the (linear) bearing. A current step of sI A implies that
a linear bearing with bias current / 2sI A is subjected
to a current step from / 2si I=− A to / 2si I= A. The
force-displacement factor sk and the force-current
factor ik both depend on the bearing’s bias current 0i ,
i.e.

sk ~ 2
0i and ik ~ 0i . (7)

Therefore either the current step size sI must be
adjusted to equal twice the reference bias current i0,ref
or the force-displacement and force-current factors
used in the above calculations must be updated as
follows:
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Figure 1: 1-DOF Magnetic Bearing
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Controller Design
Once the rotor’s mass has been determined, the system
is fully identified. Its transfer function is

2
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−

(9)

A controller for this system can be derived as follows.
Since this system has a constant phase of –180
degrees, the controller must provide positive phase and
sufficient gain in order to stabilize the unstable system
pole. A straightforward solution of achieving
stabilization for this type of plant is by means of a lead
compensator. The structure of this element is as
follows:
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The parameters k, f, and α must be chosen such that
the system is robustly stabilized.
One can show that k corresponds directly to the gain
margin of the closed loop system. To achieve
stabilisation, the product of k and the static plant gain
kplant must be less than -1. A value of -1.5 for this
product yields a gain margin of 3dB, which can be
considered a minimum requirement.
An additional requirement for the controller is that its
gain must be large enough to actually lift the rotor
(sufficiently small sensitivity function at ω== 0 ). This
condition is not fulfilled by all stabilizing controllers.
From the equation

s ik x k i m g⋅ + ⋅ = ⋅

which describes the balance of forces if the rotor is at
rest at position x in the air gap and from the static
force current relation defined by the controller
i k x= − (negative feedback), it follows that the gain
required to hold the rotor statically at a position

sx x= − in the air gap a controller gain k of

s

i i s

k m g
k
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is required. A reasonable minimum choice for the
static air gap is one quarter of the air gap from the
bearing center, yielding
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The controller gain can then be chosen as the
maximum of this gain and the minimum stabilizing
gain described above.

The parameter α can be used to define the maximum
phase lift of the compensator. This is a tradeoff
between good damping and reasonable high frequency
gain. The smaller the parameter α is selected, the
higher the maximum phase lift. However, with smaller
parameters alpha the high frequency gain of the
controller also increases. A good compromise is
α =0.15. This yields a phase lift of nearly 50 degrees
at frequency f p⋅ and an increase in high frequency
gain of 15dB.
Finally, the coefficient f can be used to shift the
controller in the frequency domain such that the phase
margin is as large as possible. It is worth noting that
the optimal f only depends on k and not on α . Figure
2 shows a bode plot of the controller for α =0.15, k=1,
p=500, and f=1.5.

EXTENSION TO TWO-DIMENSIONAL CASE
We will now extend the procedure described above to
two dimensions, i.e. we will consider a single
magnetic bearing with two degrees of freedom and the
x- and y axes rotated by 45 degrees with respect to the
vertical axis, see Figure 3. The rotor can be imagined
as disc-like. This investigation is of theoretical nature
and lays the basis for analysis of the full rotor case.
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Figure 3: Two-Dimensional Bearing
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Figure 2: Bode Plot of Controller
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Identification
Compared to the one-dimensional case described
above, the main difference in the system model is the
existence of two independent axes. In order to achieve
the desired upward acceleration of the rotor, a current
step must be applied to both bearings at the same time.
The movement along each of two axes can then be
analyzed separately. The model description is
analogous to that of the one-dimensional case, with the
difference that both the air gap fx and the
gravitational constant are reduced by a factor of 2 .
As a result, the equation of motion becomes

( ( ) ) ( ) ( )
2 2
f2

s i
x m g

m s X s s k X s k I s
s

+ = + −

and the transfer function from current to displacement
for each of the system’s axes again is that given in (9).
As before, the pole can be directly estimated by fitting
a function of type ( )( ) c o s h ix t a p t c= ⋅ ⋅ − to the
position measurement, and the mass can be extracted
from the estimated pole.

Controller Design
The two dimensional system can be controlled by
designing an individual controller for each of the two
axes. Since the transfer function from current to
displacement along each of the axes is identical to the
one dimensional case and the factor 2 cancels out in
the calculation of the minimum gain required for
lifting the rotor to a certain position, the design
procedure remains identical.

EXTENSION TO THE FULL ROTOR CASE
We will now consider a full rotor supported by two
magnetic bearing, see Figure 4. The rotor’s motion in
each of the two planes is described by the equations
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where m is the rotor’s total mass, Ip is its polar
moment of inertia, sak and s bk are the force-
displacement factors of bearing A and bearing B, and

iak and i bk represent the corresponding force-
current factors. The matrix 1T describes the
transformation of the forces generated by the bearings
to center of gravity. This system of equations can be
transformed to bearing coordinates by means of a
similarity transformation using the matrix 2T . The
matrix 1T and the transformation are defined by:
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The above system then becomes
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This representation exists for any rigid rotor.

Identification
To obtain a suitable model for controller design, the
three unknown masses 1m , 2m and 3m must be
determined. This can be done as follows:

Determination of m1 and m2. The diagonal entries of
the mass matrix can be determined as follows: While
one bearing remains switched off, the step experiment
described in the previous section is applied to the other
bearing. As a consequence, the rotor remains at rest on
one side, while at the other side it is moved upwards.
In terms of equation (11), this means for the case that
the step experiment is performed on bearing A,

1 a s a a i a a
b

m x k x k i m g
a b

= + −
+

rr (12)

Up to the gravity term, this equation is identical to the
one derived in the section describing the two
dimensional case. The difference in the last term has
no influence on the transfer function to be identified. It
merely is a difference in the disturbing gravity force.
Therefore, the identification approach developed there
can be directly applied, yielding the mass coefficient

1m . The coefficient 2m can be identified from
application of the same procedure to bearing B.
Based on this information and the controller design
method described in the last section, controllers
capable of lifting each side of the rotor individually
(with the other bearing switched off) can be designed.
It must be understood, however, that these controllers
can not be guaranteed to stabilize the rotor when both
bearings are active. While the two individual systems
have essentially one pole, the completely levitated
rotor has two unstable poles for each plane (tilt- and
translational mode), which can not be derived from the
poles observed with one of the bearings switched off.
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Figure 4: Full rotor (single plane)
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Determination of m3. In order to determine the
remaining parameter m3, it is important to notice that

1 3
b

m m m
a b

= +
+

(13)

This can be seen from the following thought
experiment: let the rotor fall freely, with both bearings
switched off. Then sak and iak are 0, and the first
line of equation (11) becomes

1 3
b

m g m g m g
a b

+ =
+

,

from which the above statement follows immediately.
Analogously, the second line of equation (11) it
follows that

2 3
a

m m m
a b

= +
+

.

After having determined stabilizing controllers for
each of the individual bearings with the other bearing
switched off, we are able to bring the rotor to the
bearing center by means of a (very slow) integrator.
Then the gravity term in equation (12) can be
determined from measurements of the control currents.
Based on this measurement and the known mass 1m ,

3m can be determined from equation (13) and the
system is then fully identified.

Controller Design
After the mass matrix has been identified, the unstable
system poles can be directly calculated. To this end,
the homogeneous system (without external forces)
must be considered:
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The system poles can then be calculated from the
eigenvalues 1λ and 2λ of the matrix
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The system has four poles that are located on the real
axis at

1,2 1p i= ± λ and 3,4 2p i= ± λ

A controller for the above system can be designed as
follows. By means of a similarity transformation based
on the matrix of eigenvectors of matrix (14), 3T ,
system (11) can be diagonalized, i.e. without the
gravity force

1 11 1
3
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If now the input of the system is multiplied by the
inverse of the last matrix product in the above
equation, the resulting new system is completely
decoupled, i.e. it consists of two independent SISO
systems just like the one described in the one
dimensional case. To each of the channels the control
procedure described above can be applied. The final
controller consists then of the product of the diagonal
augmentation of these two controllers and the inverse
matrix mentioned before.

Adaptation of operating point. In some cases, it may
be interesting to design very stiff controllers or
controllers with particularly low bandwidth. The latter
case is of particular interest when the algorithm is
applied to flexible rotors where the controller should
just barely levitate the rotor without destabilizing
higher frequency eigenmodes. (The flexible rotor
could then be identified by identification techniques
described in [2] and a more sophisticated controller
could be designed based on this model.)
A key parameter to achieving these goals is the bias
current 0i the bearing is operated with. Although the
step current required to perform the experiment
described above is rather large, it is nevertheless
possible to design controllers for very low bias
currents. For the one-bearing experiments, it follows
from (4) and (7) that if the bias current is scaled by a
factor of k, the new system pole is located at k p⋅ , i.e.
the system pole linearly depends on the bias current.
This allows for direct transformation of poles obtained
from experiments with a (usually large) bias current to
arbitrary other operating points. This scalability makes
the method applicable to all operating points, even
those with very low bias current where no step
experiment can be performed. In particular, this means
that no additional experiments are required if it is
decided to readjust the bias current after the step
experiment has been carried out.
For the full rotor case, things are similar. If both bias
currents are scaled by the same factor, the two system
poles will each also be scaled by that factor. For the
general case where the two bias currents are scaled by
different factors, the poles can be extracted from the
analytical solution of the eigenvalue problem
described above. In addition to adjusting the absolute
position of the poles, their relative position can be
adjusted as well within certain limits.

EXPERIMENTAL RESULTS
To prove the effectiveness of the method, tests have
been carried out on a test rig. The total rotor mass was
3.154kg and its moment of inertia was 0.0215 kgm2

The two bearings were identical with nominal force-
current factors ik of 39.1 N/A and force-displacement
factors sk of 293 N/mm (based on a bias current of
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i0,ref = 3A). The rotor’s center of gravity was at 157
mm from the left end of the rotor, yielding values of
10.97 mm for a and 11.73 mm for b.
The rotor was lifted in each of the bearings by means
of a step experiment as described above. Figure 5
shows the path of the rotor in the air gap of bearing A.
The positions and currents measured during the
experiment are depicted in Figure 6. From the position
data, the moments of take-off and contact with the
with the upper part of the retainer bearing have been
identified. For the system under discussion, the flight
phase lasted only 4.7 ms. This time sequence has then
been extracted from the data and fit to the function
predicted by the analytical analysis. Figure 7 shows
the result of the curve fitting. From the curve fit, a
pole at 535.1 rad/s was identified. Based on the known
value for sk , the corresponding mass 1m has been
calculated to be 1.023 kg.
Based on the identified pole, a stabilizing controller
for one bearing was designed according to the
guidelines given above. Then, the controller was
switched on and augmented with a slow integrator.
With the rotor in the bearing center, the current was
measured to be 2.051 A, yielding a value of 1.405 kg
for 1 3m m+ . Then, the procedure was repeated for
bearing B. Table 1 shows a summary of the results.

PoleA PoleB m1 m2 m3
Model 504.2 482.5 1.152 1.258 0.369

Identified 535.1 467.3 1.023 1.342 0.382

Based on the identified parameters, the poles of the
complete rotor system have been calculated to be at
97.8 Hz and 67.8 Hz for the translational and tilt mode,
respectively. The theoretical values are at 93.95 Hz
and 68.2 Hz. A controller designed based on this data
for i0 = 0.75 A successfully stabilized the rotor.

CONCLUSIONS
In this paper, a new method for automated AMB
controller design for rigid rotors has been presented. A
procedure to identify the parameters of the rotor has
been described. A method to design stabilizing
controllers based on the identified poles has been
outlined. Experimental results have been presented to
prove the effectiveness of the method.
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