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INTRODUCTION

Complex rotors are usually modeled by means of Fi-
nite Element Method (FEM) to cope with nonele-
mentary shape of the shaft and of the rotating appen-
dices connected to it (…gure 1). To account for the
the complex geometry, the discretization at the base
of the FEM model is usually characterized by a high
number of nodes and, correspondingly of degrees of
freedom. The FE model is then characterized by a
high number of densely populated modes. Such an
high order model takes the geometrical complexity of
the structure into account but may fail to bring into
evidence the more relevant modes both in terms of
energy content and observability and controllability
by available sensors and actuators. Nevertheless, FE
high order models may indicate substantial critici-
ties in the design of complex rotors due to unwanted
parasitic resonances in the working frequency range
of the machine.

In any case, modern rotor engineering strongly
relies on FE numerical models before undertaking
any actual construction. In particular for what the
active magnetic bearings (AMB) are concerned, a
model is necessary to design the control law to sta-
bilize the system represented by the rotor and the
active magnetic suspensions. In such a context, only
a few modes are really relevant to the system stabil-
ity but they must be identi…ed within their densely
populated frequency range. In other words, reso-
nant modes due to appendices supported by the ro-
tor must be separated from those due to the rotor
itself once they are checked to be of minor impor-
tance (energetically speaking).

From the above reported considerations, when
dealing with FE models the following needs emerge:

² some physically sound and numerically robust
model reduction techniques and

² some reliable selection techniques to choose the
modes to be kept into account in the reduced
model.

The former need is here addressed by means of a
modal transformation directly based on the dynamic
equation in the so-called con…guration space. The
proposed procedure relies on the exploitation of the
symmetric and asymmetric structure of the system
matrices typical of a gyroscopic system. The equa-
tions of the motion are transformed in a decoupled
modal state space that takes the gyroscopic terms
into account [2]. The e¤ect of a reduction by trunca-
tion or residualization is then studied in the decou-
pled modal state space and it leads to a reduction
technique by truncation that keeps the static gain
(usually obtained only with a residualization proce-
dure of reduction).

Figure 1: Finite element model meshing of a typi-
cal turbomolecular pump rotor on active magnetic
bearings.
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The latter need is achieved by means of a modal
cost approach that accounts for the so-called me-
chanical energy (kinetic and potential) of the system.
In order to check its numerical reliability, it has been
compared with a physical approach which consists in
decreasing the material density and Young’s modu-
lus of parts of the rotor while preserving their ratio.
This method makes the in‡uence of these substruc-
tures on the main rotor to vanish progressively (thus
e¤ecting its natural frequencies) while maintaining
their natural frequency (vanishing modes).

FE MODEL STRUCTURE
By construction, FE models are usually character-
ized by a considerable amount of degrees of freedom
not strictly needed either for analysis or for design
purposes. With the standard distinction between
master and slave degrees of freedom, a …rst “a pri-
ori” reduction (for instance the so-called Guyan re-
duction) is usually carried on. For example, all rota-
tions are usually considered slave degrees of freedom
except for nodes where highly gyroscopic elements as
disks are located. The resulting model yields exact
results for static problems, i.e. the same results that
would be obtained from the complete model.

Since the ‡exural, axial and torsional dynamics
of a rotor may often considered uncoupled [1], only
the former will be here considered, whose complete
dynamical equation is the following:

MflxÄq(t) +
[Cr + Cn ¡ i!Gflx] _q(t) +£
Kflx ¡ i!Cr + !2 (K! + K0

!)
¤
q(t)

= f(t) + !2ei!tfunb (1)

where
Mflx Flexural mass
Cr Rotating damping
Cn Nonrotating damping
Gflx Gyroscopic e¤ect
Kflx Flexural sti¤ness
K! + K0

! Speed dependent sti¤ness
! Spin speed
q(t) = x(t) + iy(t) Complex radial coordinates
f(t) External nodal forces
funb Static unbalances

The adoption of complex radial coordinates is ex-
pedient in rotordynamics to describe in a compact
and immediate form the whirl motion as well as its
forward or backward nature (di¤erently linked to
overall stability under rotation). In the case of axis
symmetry complex co-ordinates allow to exploit the
intrinsic decoupling of the system in two identical
subsystems lying orthogonal planes. In order to work

in real coordinates the following transformation is to
be accomplished:

q(t) = x(t) + iy(t) ¡!
½

x(t)
y(t)

¾
= q(t) (2)

that applied to equation 1 split to real and imaginary
parts leads to

MflxÄx(t) +
[Cr + Cn] _x(t) + !Gflx _y(t) +£
Kflx + !2 (K! + K0

!)
¤
x(t) + !Cry(t)

= fx(t) + !2 sin(!t)funb (3)

MflxÄy(t) +
[Cr + Cn] _y(t) ¡ !Gflx _x(t)+£
Kflx + !2 (K! + K0

!)
¤
y(t) ¡ !Crx(t)

= fy(t) + !2 cos(!t)funb (4)

and, in matricial form,

MÄq(t) + [L + G] _q(t) + [K + H]q(t) (5)
= f(t) + !2Ufunb

where the following matrices

M =
·
Mflx

Mflx

¸
; G=

·
!Gflx

¡!Gflx

¸

K =
·
Kflx + !2 (K! + K0

!)
Kflx + !2 (K! + K0

!)

¸

L =
·
Cr + Cn

Cr + Cn

¸
; H=

·
!Cr

¡!Cr

¸

clearly show their symmetric and antisymmetric
structure. For what the the size of the system of
equation 5 is concerned, the adoption of real co-
ordinates doubles the order of the system. If n is
the number of degrees of freedom in complex co-
ordinates, the number of degrees of freedom in real
co-ordinates is 2n and the square matrices M , L, G,
K, H are of order 2n £ 2n.

Modal model via direct Cholesky transforma-
tion

The equations of the motion of a general linear gy-
roscopic system can be written in terms of modal
co-ordinates » using the eigenvectors Ái of the un-
damped and nongyroscopic system as a base for the
nodal displacements.

q(t)= Á»(t): (6)

The columns of the square matrix Á are the mode
shapes of the undamped and nongyroscopic system,

52 MODELING AND IDENTIFICATION



i.e. the eigenvectors of matrix M¡1K and » are the
modal co-ordinates. Even in the case the viscous
damping matrix L and and the circulatory matrix
H are null, the presence of the gyroscopic matrix
G couples the resulting equations of the motion in
the modal space. In the case of rotors with a small
gyroscopic e¤ect the coupling between the various
modes can be neglected and the procedure allows to
obtain a set of decoupled equations in the con…gu-
ration space. In the case of highly gyroscopic rotors
such as those shown in …gure 1 the coupling terms
can not be neglected. Even if he use of modal co-
ordinates does not allow to obtain a decoupling, it is
adopted as it allows a more straightforward tuning
of natural frequencies and dampings by comparison
with the experimental measurements. To be noted
that this approach can be adopted to the equations
of the motion in complex co-ordinates (equation 1).

The decoupling of the dynamic equations can be
dealt with in a more systematic way if the equations
of the motion of the system are expressed in a state
space form. The most commonly adopted alternative
in this case is to rewrite equation 5 as a general linear
dynamical system.

_x = Ax + Bu
y = Cx (7)

where the state and external input vectors x and u
are

x = fq; _qgT ; u = f

The dependance from the time t of has been dropped
for simplicity. Matrices A, B, C are

A =
·

0 I
¡M¡1(K + H) ¡M¡1(G + L)

¸

C =
£
Tout 0

¤
; B =

·
0

M¡1Tin

¸

the output matrix C has been written under the
assumption that only displacement sensors are in-
stalled on the structure, matrix Tout accounts for
their location and gain. The input selection matrix
Tin accounts for the location of the forces acting on
the structure.

The state equations in physical co-ordinates 7 can
be decoupled using a Jordan canonical form. It is
worth to point out that the generality of the method
allows to obtain a decoupled set of equations even
in the case of a heavily damped system. By con-
verse the generality of the method does not allow to
exploit the symmetries and anti-symmetries peculiar
of a gyroscopic system.

As already pointed out, the complex geometry of
most rotors of practical relevance, the number of
nodes needed for their FEM discretization can be
very high. The order of the matrices involved in
equation 5 is then high and they are usually char-
acterized by high modal density. The high modal
density and the size of the matrices makes the com-
putation of a canonical form of equation 7 a numer-
ically ill conditioned problem.

An alternative solution to decouple the equations
of motion of a gyroscopic system has been proposed
by Meirovitch [2] in the case the viscous damping L
and the circulatory matrix H are null.

The assumption that the system is undamped is
justi…ed by the usually small dissipation a¤ecting the
rotor and its supports. This assumption can fail in
the case of rotors supported magnetic bearings where
the presence of a high damping due to the magnetic
supports can lead to a signi…cant coupling between
the modes. The equations of the motion 5 can be
rewritten in a state space form using the same state
vector adopted in equations 7

M¤ _x + G¤x = T¤f (8)

where matrices M¤ and G¤ and T¤ are obtained
from the mass, the sti¤ness the gyroscopic and the
input matrices as

M¤=
·
K 0
0 M

¸
; G¤ =

·
0 ¡K
K G

¸
; T¤ =

·
0

Tin

¸

The state form of equation 8 takes advantage of
peculiar characteristics of matrices K, M, and G
such as:

² the mass matrix M is real, symmetric and pos-
itive semi-de…nite, matrix M fails to be posi-
tive de…nite only when nodes with no associated
mass are included in the …nite element model;

² the sti¤ness matrix K is real, symmetric and
usually positive semi-de…nite, matrix K fails to
be strictly positive de…nite in the case of unsup-
ported rotors. In the case of rotors supported
by magnetic bearings the intrinsic negative sti¤-
ness of the magnetic actuators makes matrix K
negative-de…nite

² the gyroscopic matrix G is anti-symmetric
(GT = ¡G).

>From the properties of matrices K M and G
it follows that the state matrices M¤ and G¤ are
symmetric and anti-symmetric respectively.

Under the assumption that:
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² the nodes with no associated mass are not in-
cluded in the FEM model, and

² the rotor is supported by springs with positive
sti¤ness,

matrix M¤ becomes symmetric and positive-de…nite
and a Cholesky decomposition can be applied to it.

M¤= LLT (9)

where L is a lower triangular nonsingular real matrix.
In the case of rotors supported by magnetic bearings
the assumption that the rotor is supported by springs
with positive sti¤ness is equivalent to assume that
the feedback control is able to drive the magnetic
actuators with a proportional gain high enough to
compensate for their intrinsic negative sti¤ness.

Taking the Cholesky decomposition 9 into account,
the state equations 8 can then be rewritten in a state
space modal form as

_» = » + ªf : (10)

The modal state and input matrices  and ª are
given by

 = ¡¡T ~G¡; ª = ¡TL¡1T¤ (11)

where matrix ~G is obtained from matrix G¤ with the
following linear transformation

~G = L
¡1

G¤L¡T = ¡~GT (12)

and the columns of matrix ¡ are the eigenvectors of
the matrix ©

© = ~G
T ~G: (13)

Due to the antisymmetry of matrix ~G (equa-
tion 12), matrix © is characterized by a set of 2n
real and positive eigenvalues ¸i with multiplicity 2
each. Furthermore, the 2 eigenvectors ¤i and £i
corresponding to each eigenvalue ¸i are orthogonal.
They can be included as columns of two matrices ¤
and £ of order 4n £ 2n such that

¡ =
£

¤ £
¤

(14)

The transformation between modal states » and
physical states x is then

x = L¡T ¡» = L¡T £
¤ £

¤½
´
³

¾
: (15)

Modal states ´ and ³ correspond to the mode
shapes included in the two orthogonal sets ¤ and
£.

Due to the properties of matrices ¡ and ~G, the
modal state matrix  is antisymmetric and it can be
split in a 2 diagonal form

 = ¡
·

0 !
¡!T 0

¸
(16)

matrix ! (2n £ 2n) is diagonal, its elements are the
natural frequencies of the system. The bi-diagonal
and anti-symmetric structure of matrix  allows to
split the state equations 10 in 2n couples of equations
of the type

_́ i = ¡!i³i + f´i
_³i = !i´i + f³i

¾
i = 1; : : : ; 2n !i =

p
¸i:

(17)

each couple of equations is decoupled from the all
the other.

MODAL COST
Modal cost analysis [3], [4] may be considered as a
mean to obtain a measure of the relative importance
of each mode, it relies on an underlying set of refer-
ence input and initial conditions. In the case of uni-
tary impulse excitation and null initial conditions,
the overall modal cost may be written as

V =
nX

i=1

Vi =
nX

i=1

Z 1

0
»i (t)T Wv»i (t) dt (18)

where Wv is a weighing matrix. In the case of a
mechanical system if Wv = diag(M;K) the term Vi
is related to the mechanical energy (kinetic+elastic
energy) associated with the ith modal state »i.

The modal cost is computed as

V = tr fWvXg (19)

where X satis…es the Lyapunov equation:

XT + X + ÃÃT = 0 (20)

where matrices  and Ã are obtained from equa-
tion 11.

Vanishing modes

In order to check the results o¤ered by modal cost
computation, a completely di¤erent approach to
identify the relevant modes is here proposed. It relies
on assembling many …nite element models that dif-
fer only for a parameter ° that premultiply both the
material density and the Young’s modulus of the ap-
pendices substructures, thus leaving unchanged their
natural frequency but making their in‡uence on the
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Figure 2: Modal natural frequencies as a function of
° parameter.

main structure to “vanish”. The vanished appen-
dices no longer e¤ect inertially the main structure
whose natural frequency turns out to change with
parameter ° . The method has been adopted to in-
vestigate the importance of the local modes of the
discs and the array of blades for the rotor of …gure 1.
Figure 2 shows the undamped natural frequencies of
the rotor as a function of the weighting parameter °.
The few modes in‡uenced by the vanishing of param-
eter ° are the modes of the shaft that are a¤ected
by the inertial behaviour of the appendices as rigid
bodies.Table reports the comparison between modal
costs computed for the same rotor and the results
yielded by the vanishing modes computation. The
natural frequencies for ° = 10¡5 and ° = 1 are re-
ported in the second and fourth columns. The modal
costs computed for ° = 1 are reported in column 5.
Local modes of the substructure are not substantially
a¤ected by vanishing of their mass, they are then in
the same row of the table. The blanks at the left of
mode #6 at ° = 1 because this mode becomes mode
#9 at ° = 10¡5, this is then a mode of the shaft
which is a¤ected by the appendices. The migration
of this mode is also shown in …gure 2. Similarly mode
#16 at ° = 1 becomes mode #19 at ° = 10¡5.

The modal costs reported in the last column of
table show high values for modes #1 and #2 (rigid
body modes) and for the modes which show substan-
tial changes in the “vanishing” process. The values
of the modal cost show that modal costs may fail
to provide clear indication in the case of very close
modes.

(#) Freq. (Hz) (#) Freq. (Hz) Cost (%)
° = 10¡5 ° = 1

1 69.7 1 51.5 85.7
2 148.0 2 84.6 11.3
3 353.7 3 353.6 0.06
4 383.0 4 380.8 0.10
5 426.0 5 418.6 0.86

6 448.6 0.62
6 641.7 7 645.6 2.1¢10¡3

7 994.0 8 996.3 1.8¢10¡3

8 1067.4 9 1071.8 1.0¢10¡3

9 1236.5
10 1433.8 10 1433.9 3¢10¡6

11 1433.9 11 1438.3 2¢10¡3

12 1545.3 12 1554.0 3¢10¡5

13 1554.1 13 1554.1 2¢10¡6

14 1554.1 14 1554.1 3¢10¡8

15 1554.1 15 1611.8 2.4¢10¡2

16 1644.8 6.6¢10¡2

16 2246.0 17 2251.5 3¢10¡4

17 2420.7 18 2425.8 3¢10¡4

18 2678.6 19 2681.5 2¢10¡3

19 2830.0
20 3033.5 20 3685.7 4¢10¡4

21 4042.6 21 4046.9 3¢10¡2

Table 1: Modal costs computed in the extreme cases
of structure with real and vanished modes, respec-
tively ° = 1 and ° = 10¡5. Note the di¤erent order
number due to migration of the shaft modes.

MODAL REDUCTION

The decoupling of the modal state space equation
10 can be exploited in order to reduce the order of
the model. The number of degrees of freedom of the
…nite element model is, in fact, largely determined
by geometric complexity of the rotor. To reduce the
number of degrees of freedom of equation 8 including
the dynamic behavior relevant for the point of the
control design the modal co-ordinates can be split
in a master and in a slave subset. Usually these
two subsets is performed on a frequency basis, in the
following the selection is performed using a criteria
based on a “vanishing modes” analysis.

Equation 17 show that the modal state equa-
tions 10 are organized in couples with an anti-
symmetric state matrix. The selection between mas-
ter and the slave subset must then be made consid-
ering each couple of modal variables as if it were an
undivisible entity. Under the assumption that the
response of the modes included in the slave subset is
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static the state equations 10 become:

_»m + m»m = ªmf (21)
s»s = ªsf (22)

where

ªm = ¡T
mL¡1T¤; ªs = ¡T

s L¡1T¤ (23)

The slave states are obtained from equation 22

»s = ¡1
s ªsf (24)

It can be shown that

x = L¡T ¡» = L¡T ¡m»m + L¡T ¡s¡1
s ¡T

s L¡1T¤f
(25)

Due to the orthogonality of the vectors contained in
the matrix ¡ and its submatrices and due to anti-
symmetry of matrix ¡1

s the static contribution of
the input force on the con…guration vector x is null

L¡T ¡s¡1
s ¡T

s L¡1 = 0 (26)

Truncation versus residualization

As the direct link between the state vector x and
the input force f vanishes, the static response of the
modes included in the slave subset does not con-
tribute to the state vector x obtained from the re-
duced model. Taking the output equation 7 the
static response of the slave modes do not give a con-
tribution to the output.

Figure ?? shows the transfer function between the
magnetic actuator located in the bell shaped struc-
ture of …gure 1 and and the corresponding sensor.
The continuous curve is relative to the complete
model. The dashed one is obtained using the above
described modal reduction. Only the modes shown
to be important by the “vanishing modes analysis”
have been included in the master mode set. The com-
parison shows that the reduced model preserves the
same pole-zero structure of the complete model up
to frequencies close to that of the last mode included
in the master set.

CONCLUSIONS
A modal reduction technique based on a non stan-
dard (Jordan) modal form is presented. The modal
transformation is directly based on the matricial sec-
ond order representation of the dynamical equation
of the undamped gyroscopic system. It is shown that
this form allows a reduction by truncation that keeps
the static gain and the zero-pole structure of the
complete system (as for the so-called residualization
reduction methods).
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Figure 3: Force to displacement transfer function of
rotor of …gure 1.

In order to select the modes to be included in the
reduced model, a modal cost analysis is compared to
a physically based technique to show its achievable
reliability. The analysis con…rms that modal costs
may fail to provide clear indication in the case of
very close modes. The proposed “vanishing modes”
technique is shown to be able to cope with these oc-
currences but requires extensive …nite element model
recomputation.
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