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ABSTRACT  
An option to hybrid Maxwell/Lorentz type self bearing 
motors and their inherent trade-off between bearing force 
and motoring torque with PM magnet thickness is one 
which utilizes Lorentz forces for bearing and motoring 
force production.  A slotless version of this type of self 
bearing motor, and its test rig, are discussed in this paper.  
The test rig includes the motor, along with a conventional 
magnetic bearing, a shaft assembly, radial position 
sensors and an optical encoder. Experimental results are 
presented showing the force versus current relation for 
the self bearing motor and indicates that several of the 
destabilizing side pull forces predicted by theory may be 
neglected in practice.  In particular, the cross coupled 
bearing current gain for the motor is experimentally 
shown to be negligible as compared to the direct bearing 
current gain.  This result provides the basis for stabilizing 
control of the motor.  The current gain for the torque 
production was measured as 2.5 N-m/A, and that for 
bearing force production was measured as 48.2 N/A.  
These results are shown to agree well with theory. 
 

INTRODUCTION 
Self bearing motors combine magnetic bearing and torque 
production into a single actuator.  This is desirable 
because of the resulting reduction in the overall length of 
a motor’s shaft and because mechanical bearings need not 
be used.  As a consequence, a shortened shaft length and 
elimination of additional bearings results in a shaft weight 
reduction.  This twofold effect increases the system’s 
natural frequencies and decreases the possibility of 
experiencing rotordynamic vibration problems. 
 
Several investigators have recently studied permanent 
magnet self bearing motors [1], [2], [3], [4].  For the 
motors in studies such as these, the bearing forces are 
Maxwell-type forces that act between the rotor and the 
stator.  Lorentz-type forces acting between the rotor and 
current carrying conductors provide the motoring torque.  

A problem with these designs is that to increase torque, 
one must increase the permanent magnet (PM) thickness.  
In doing so, however, the bearing force is reduced because 
of increased path reluctance through the thicker magnets.  
Slotted designs came about to optimize this design.  These 
slotted designs, while successful, naturally include 
significant detent and cogging torque because of the 
preferred positioning of the rotor’s permanent magnets 
and the stator’s teeth.  For precision-pointing applications, 
this design characteristic is debilitating and, therefore, 
very undesirable.   
 
An alternative to the hybrid reluctance/Lorentz type 
designs is introduced by Stephens [5].  It is termed the 
Lorentz type, slotless self bearing motor.  In this design, 
Lorentz type forces are used to produce both the bearing 
forces and the motoring torque, resulting in an actuator 
where thicker PM’s result in larger torque production and 
larger force production.  This essentially eliminates the 
trade-off in bearing force and motoring torque with PM 
thickness found in many previous designs.  Further the 
design is slotless so detent and cogging torque is 
minimized, making this actuator well suited as a servo 
motor for precision pointing applications.   The Lorentz, 
slotless design has also been studied on the basis of fault 
tolerance in a companion paper to this one [6]. 
 
This paper describes an experimental test rig designed to 
measure the open loop and closed loop properties of the 
Lorentz type, slotless self bearing motor proposed in [5].   
Both the feedback loop and mechanical portion of the 
experimental rig are described.  Experimental procedures 
for measuring the open loop current gains and position 
stiffnesses are detailed.  Finally, experimental results are 
presented and compared to those predicted by theory.  
Good agreement is seen between the experimental and 
theoretical results, both qualitatively and quantitatively.  
These measurements provide the basis for future work 
focused on stabilizing the self bearing motor. 
 



  

FORCE AND TORQUE GENERATION IN THE 
SLOTLESS, LORENTZ SELF BEARING MOTOR   
 

S N

N S
NS

N S

N
S

S
N

N
S

S
N

SN
S N

N S

S N

S
N

N
S

S
N

Se
gm

en
t-2

Segm
ent-4

Y

X

STATOR

ROTOR

S
N

Segment-1

Segment-3

R

F1x

F2y
F3x

F4y

φ
ωt

ψ1=π/2

ψ4=2π
ψ2=π

ψ3=3π/2

θ

θ

θ

θ

 
FIGURE 1:  Actuator Layout and Force Generation 

Principle 
 

Figure 1 illustrates the layout of the self bearing motor, 
and shows the Lorentz type force vectors required to 
rotate and center the rotor.  The motor consists of M=8 
PM pole pairs on the rotor and Nseg=4 individually 
controlled winding segments attached to a slotless stator.  
Each winding segment is an arc of π/2 radians.  The 
windings in each segment are 3 phase with a 60 degree 
commutation angle, and occupy Ns=12 winding stations 
with Nw=85 wires per station.  Each segment produces a 
traction on the surface of the rotor.  Each traction is 
resolved into the segment forces, F1x, F2y, F3x and F4y, by 
proper construction of the motor.  These forces can be 
used to produce motoring torque, and modulated to 
produce controllable bearing forces in the x and y 
directions.  The following mapping between the segment 
currents, i1 – i4, and the directional control currents, ix, iy 
and iθ is used: 
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Using this current mapping and assuming ideally 
sinusoidal PM flux and winding current distributions 
about the motor circumference, [5] shows that the force 

and torque generated by the motor are approximated, for 
small rotor eccentricities, by equations of the form:   
 

( )x b x pm L cr w yF K i K x K i y K K i iθ θ= + − + +      (2) 
 

( )y b y pm L cr w xF K i K y K i x K K i iθ θ= + + − +     (3) 
 

iT K iθ θ θ=        (4) 
 

where the two control gains Kb, and Kiθ govern the 
bearing control forces and torque production, and the 
gains Kpm, KL, Kcr and Kw are destabilizing.  The control 
gains are approximated for all rotor angular positions, ωt, 
by: 

2b m w sK LB N Nε=           (5) 
 

i m w sK LRB N Nθ επ=           (6) 
 
where L is the motor length, Bm is the maximum value of 
the sinusoidal PM flux distribution, R is the rotor radius 
and ε=cos(Mγ) is a correction factor that accounts for the 
pole pair number, M, and the phase difference, γ, between 
the PM flux distribution and the winding current 
distribution.  Kb varies slightly with angular position of 
the rotor.  Figure 2a illustrates this variation for the 8 PM 
pole pair motor where bK =Kb/(1.414εLBmNwNs).  Figure 
2a indicates that this variation is negligible.   
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FIGURE 2:  Variation in Force Constants 

 
Kpm is the negative stiffness due to the PM flux 
interacting with the stator and is analogous to the 
negative stiffness in a typical magnetic bearing.  Kpm is 
computed as: 
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FIGURE 3:  Experimental Test Rig for Self Bearing Motor 
 

where Br is the remnance flux, tm is the PM radial 
thickness, tc is the radial thickness of the windings, go is 
the nominal radial air gap, µo is the permeability of free 
space, µR is the recoil permeability, Kml the magnet to 
magnet leakage factor and Cφ is the flux concentration 
factor. KL is the cross-coupled position stiffness that 
results due to Lorentz interactions between the PM flux 
and the winding currents when the shaft is in the 
eccentric position.  KL is computed by: 
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Kcr is the cross-coupled current gain resulting from 
Lorentz interactions even when the shaft is in the 
centered position.  Like Kb, Kcr varies with rotor angular 
position.  Figure 2b illustrates this variation about zero 
where crK =Kcr/(1.414εLBmNwNs).  As Figure 2 
indicates, ,cr mxK <<Kb, which is necessary in order to 
produce independent bearing forces and torque in the 
motor.    
 
Finally, Kw is the cross coupled current gain resulting in a 
reluctance (Maxwell) type side pull force due to a non-
symmetric winding flux interacting with the rotor.  The 
non-symmetric winding flux occurs even when the rotor 
is in the centered position and is non-zero only when 
large torque and bearing forces are required, 
simultaneously.  Kw is approximated by: 
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For a thorough derivation of these gains and a description 
of the control algorithm of the motor the reader is 
referred to references [5] and [6].  In the next section, an 
experimental test rig, that is used to measure certain 
effects of the force and torque gains,  is described. 
 
 
TEST RIG DESCRIPTION 
A table top test rig was constructed for the self bearing 
motor and is shown in Figure 3.  The rig consists of a 
conventional 8-pole magnetic bearing on the outboard 
end of a shaft (outboard is the end furthest from the 
encoder) with inductive probes measuring radial 
displacements, Xb and Yb.  The slotless self bearing 
motor is assembled near the mid span of the shaft and 
uses inductive probes to measure the radial displacements 
Xm and Ym.  Using two different sets of position probes 
reduces the susceptibility of the system to sensor-actuator 
noncollocation problems. The other end of the shaft is 
connected to a rotary optical encoder providing the 
angular measurement, θ.  The connection uses a Jarno 
interface and an aluminum coupling such that the encoder 
ball bearings support one end of the shaft through the 
coupling, while the other end of the shaft is free to move 
radially, pivoting about the coupling as illustrated in the 
figure.  In order to stabilize the shaft, either the 



  

conventional magnetic bearing or the self bearing motor 
can be used.   In addition, the conventional magnetic 
bearing can be used as a force sensor to measure the force 
characteristics of the self bearing motor. 
 

TABLE 1:  Summary of Test Rig Construction 
 

 Property Symbol Units Value 
Number of Pole Pairs M -- 8 
Number of Segments Nseg -- 4 
Number of Winding 
Stations per Segment 

Ns -- 12 

Number of Wires per 
Winding Station 

Nw -- 85 

Radial Thickness of 
Permanent Magnets 

tm (mm) 7.75 

Radial Thickness of coil 
windings 

tc (mm) 3.87 

Nominal radial air gap go (mm) 0.762 
Rotor Outer Radius R (mm) 50.8 

M
ot

or
 P

ro
pe

rti
es

 

Motor Length L (mm) 25.4 
Distance from Pivot 

Point to External Load 
Lx (cm) 19.9 

Distance from Pivot 
Point to Mag. Bearing 

Lb (cm) 15.9 

Distance from Pivot 
Point to Motor 

Lm (cm) 7.75 

Control Bandwidth BW (Hz) 3,000 
Controller Hardware dSPACE DS1103 Card Sy

st
em

 P
ro

pe
rti

es
 

Power Amplifiers Advanced Motion Controls 
 

The feedback loop of the system consists of the five 
sensor measurements, Xb,Yb,Xm,Ym,θ that are 
conditioned and fed into a dSPACE DS1103 motion 
control system.  The control algorithm is detailed in [5] 
and [6], and produces a set of control current requests for 
the conventional magnetic bearing and for the self 
bearing motor.  The self bearing motor’s control loop 
utilizes an additional analog stage in formulating the four 
3 phase segment currents.  A group of 16 Advanced 
Motion Control power amplifiers then generate the self 
bearing motor and the conventional magnetic bearing 
control currents.   
 
The shaft assembly is shown in detail in Figure 4, along 
with the first three free-free flexible modeshapes.  The 
shaft is designed to have the fewest possible flexible 
body modes within the control bandwidth of 3 kHz.  The 
shaft assembly consists of a sensor target for the 
conventional magnetic bearing, a stack of thin laminated 
journals for the conventional magnetic bearing, a sensor 
target for the motor bearing and the self bearing motor 
rotor with permanent magnets attached.  The stator 
housing and encoder stanchion are mounted on a 
common baseplate.   The shaft assembly is quite stiff 
with the first three shaft flexible modes at 2,792 Hz, 
5,625 Hz and 9,271 Hz.  Only the first flexible mode is 
within the control bandwidth of 3 kHz, which is limited 

by the power amplifiers.  Table 1 summarizes the 
construction of the test rig and the self bearing motor. 
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FIGURE 4:  Shaft’s First Three Flexible Body Modes  
(a) 2792 Hz, (b) 5625 Hz, (c) 9271 Hz 

 
Figure 4 also shows the location of each sensor plane, the 
self bearing motor and the conventional magnetic 
bearing.  Comparing the location of these components to 
the vibration nodes in each mode shape gives an 
indication of any controllability, observability and non-
collocation problems.  The first mode is quite observable 
and controllable from the sensor and actuator locations, 
and it does not suffer from sensor actuator non-
collocation. 
 
 
 
 



  

EXPERIMENTAL 
Force Measuring Procedures 
As mentioned previously, one function of the 
conventional magnetic bearing in the test rig is to act as a 
force sensor for the self bearing motor.  This is done by 
determining the static closed loop force versus 
displacement relationship for the magnetic bearing using 
the following procedure.  The magnetic bearing is located 
a distance of Lb=15.9 cm from the pivot point (see Figure 
4).  It is stabilized under PD control; therefore, it resists 
applied loads statically just as a mechanical spring does.  
Known loads are then applied to the shaft at the outboard 
end, a distance of Ls=19.9 cm from the pivot point, and 
the displacement is measured at the magnetic bearing 
plane.  Using the previously calibrated displacement 
sensitivity of the radial position sensor, Ssensor=8.4 V/mm, 
and scaling the results by the appropriate lever arms from 
the pivot point (Ls and Lb), a force vs. displacement curve 
is generated.   Figure 5 shows the resulting calibration 
curve for the bearing x-direction which results in a static 
force sensitivity (the closed loop bearing stiffness) of 
Sforce=532 N/mm.  Note that this includes the side pull 
force of the PM rotor as it was in place on the shaft 
during calibration.  Finally, this calibration curve is used 
for both the x and y direction forces as these axes are 
symmetric.    
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FIGURE 5:  Magnetic Bearing Calibration Curve 

 
The force generation characteristics of the self bearing 
motor are measured using the static force sensitivity of 
the conventional magnetic bearing, Sforce, and the 
following procedure.  First, the angular positioning loop 
for the motor is closed, resulting in a torsional position 
stiffness, which maintains the same angular position 
during testing.  Open loop bearing forces are then 
generated by the self bearing motor using the control 
currents, ix and iy.  These open loop forces act on the 
shaft at the motor, a distance of Lm=7.75 cm from the 
pivot point.  The displacement at the magnetic bearing is 
then measured and the static force sensitivity used to 
compute the open loop force applied by the motor.  This 
procedure is used in the following section to measure the 
force generation of the self bearing motor. 

Results and Discussion 

 

FIGURE 6: PM Flux Density Distribution 
 
Figure 6 shows a plot of the measured PM flux density at 
different points along the face of one of eight identical 
pole pairs while the rotor is centered inside the stator.  
The plot also includes a fitted square wave and the ideal 
sine wave.  Note that the theoretical actuator properties in 
equations (5)-(9) are based on the sine wave 
approximation.  Bm = 0.8 T is used in these equations to 
compute the theoretical results.  The difference between 
the ideal sine wave and the measured PM flux 
distribution is a source of error between the measured and 
theoretical results. 
 

TABLE 2:  Measured and Theoretical Results, γ=0 
 

φφφφ = 00 φφφφ =11.250 Property Symbol 
Theory/

Measured 
Theory/ 

Measured 
Torque Gain Kiθ (N-

m/A) 
3.4/ 
2.5 

3.4/ 
2.5 

Bearing Force 
Current Gain 

Kb (N/A) 29.3/ 
48.2 

29.3/ 
53.3 

Cross Coupled 
Bearing Force 

Gain, max. 

KCR 
(N/A) 

0/ 
1.7 

1.8/ 
3.2 

Negative 
Stiffness Due to 

PMs 

KPM 
(N/A) 

43,570/ 
-- 

43,570/ 
-- 

Position 
Stiffness Due to 
Lorentz Forces 

KL 
(N/m*A) 

3,496/ 
-- 

 

3,496/ 
-- 

Side Pull Due to 
Winding Flux 

KW 
(N/A2) 

0.97/ 
-- 

0.97/ 
-- 

 
Table 2 summarizes the theoretical and experimental 
actuator gains for the self bearing motor.  The open loop 
torque gain was measured using a simple torque wrench 
and found to be 2.5 N-m/A, which compares well with 
the theoretical value of 3.4 N-m/A.  To measure the open 
loop bearing forces in the motor, the feedback loop in the 
angular direction, θ, is closed using a PID controller. 
With no torsional load applied to the motor during 
testing, the control current was measured as iθ = 0.050 A.  
For this value of iθ, the side pull forces due to KL and KW 



  

are computed as 0.006 N and at 0.005 N, respectively, 
based on equations (8) and (9).  Therefore, these terms 
are assumed to be negligible in the experimental force 
measurement.  Further, since the calibration curve of 
Figure 5 includes the effects of KPM, the side pull force 
will not be measured by this procedure.  This leaves only 
two terms in the bearing force equations:  the direct and 
the cross-coupled bearing force gains, which are of the 
most interest since they relate to ix and iy, which are used 
to control the system.  
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FIGURE 7: Force Variation with Control Current, iy 
 
Figure 7 shows the variation in the x and y-direction 
forces with the control current, iy, at two rotor angular 
positions of 0o

 and 11.25o.  Referring to Figure 2, these 
rotor positions correspond to the average and peak values 
of Kb and Kcr, respectively.  The direct bearing current 
gain, Kb, is the slope of the lines in Figure 7a, and is 
measured as 48.2 N/A and 53.3 N/A at 0o

 and 11.25o, 
respectively.  These compare to theoretical values of 29.3 
N/A for both positions.  The main difference between the 
theoretical and experimental results is most likely due to 
the actual flux distribution being closer to a square wave 
than a sine wave as shown in Figure 5.  The cross-
coupled bearing current gain, Kcr, is the slope of the lines 
in Figure 7b, and is found to be 1.7 N/A and 3.2 N/A at 
0o

 and 11.25o, respectively.  These compare to a 
theoretical value of zero and 1.8 N/A at each position.   
 
The most significant experimental result is that Kcr<<Kb, 
which confirms the theoretical results found in [5].  
Specifically,  the theoretical results show that Kcr,max is 
6.1% of Kb, and the experimental results show that Kcr,max 

is 6.6% of Kb.  Therefore, the cross coupled term can be 
considered negligible as compared to the direct term and 
independent bearing force in each direction are 
practically, if not strictly, generated.  This provides the 
basis for stabilizing control of the self bearing motor.   
 
 
SUMMARY AND CONCLUSIONS 
This paper described the force and torque generation 
principles of the Lorentz self bearing motor.  A test rig 
was also described that can be used to measure the force 
and torque constants of the motor.  Experimental results 
were presented showing the force versus current relation 
for the self bearing motor, and indicating that several of 
the destabilizing side pull forces predicted by theory may 
be negligible in practice.  In particular, the cross coupled 
bearing current gain for the motor was experimentally 
shown to be negligible as compared to the direct bearing 
current gain.  This result provides the basis for stabilizing 
control of the motor. 
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