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Abstract

Suspension of an active magnetic bearing (AMB) sys-
tem involves significant computational and monitor-
ing effort. Modern AMB systems need 1) logically
complex and computationally expensive controller al-
gorithms and I/O; 2) real time data storage of plant
information such as states, inputs, and outputs; 3)
real time plotting capabilities (such as rotor displace-
ment as a function of time, actuator forces as a func-
tion of time, and FFTs); 4) real time controller pa-
rameter updates; and 5) real time access to reference
signals; and 6) remote monitoring for safety purposes.
Control systems based upon embedded Digital Sig-
nal Processors (DSP) boards often require specialized
programming and development tools, may lack flex-
ibility when computational requirements change, are
often financiallly expensive, and may not directly ad-
dress the aforementioned needs. Even worse, newer
and faster DSPs may not be fully pin compatible with
their predecessors, thus requiring total redesign of the
embedded electronics for a given project.

A novel DSP-less controller implementation system
– the Real Time Controls Laboratory (RTiC-Lab) –
has been developed explicitly to address these prob-
lems. It uses the concept of Real Time Operating Sys-
tems to guarantee hard real time constraints. Its de-
sign is based on the use of both commodity personal
computers and RT-Linux, a free and Open Source
modification of Linux intended to support hard real-
time computation. RTiC-Lab is also free and Open
Source and is intended to serve as a communal ef-
fort among the controls engineers in both the con-
trols and AMB community. Discussion is presented
on the design of the software architecture, defining
timing requirements of the control tasks, and mea-
suring the predictability of RTiC-Lab. An example
application is presented which uses RTiC-Lab in the
controls implementation on a five degree of freedom
AMB.

1 Introduction

AMBs now require multiple computational tasks such
as (in order of importance) 1) periodic fixed rate sus-
pension controllers, 2) a key phasor monitoring task,
3) auto-balancing controller, 4) data visualization
tasks, 5) network transfer tasks, and 6) miscellaneous
additional tasks (e.g. watchdogs and screen refresh
tasks). Commonly, each of these is implemented as
a sequence of commands, interpreted one command
at a time, in a digital computer. All of these tasks
may be trivially implemented if enough independent
computational engines are available. A more cost ef-
fective solution is to implement all of these tasks in
one single central processing unit (CPU), using some
of the many optimal scheduling algorithms that are
currently available in the field of Real Time Systems
(RTS).

Full embedded control for an AMB system requires
significant computational effort – especially for flex-
ible rotors. This is caused by the inherent open
loop instability of all AMBs. The success of the
AMB is heavily dependent on the design of the con-
troller. In turn, the controller relies heavily on a
priori knowledge of the plant dynamics. Thus, con-
siderable modeling, characterization, and controller
parameter calibration effort is necessary during the
early controller implementation stages for a given
AMB application. The controls engineer needs to
fully evaluate AMB performance via considerable ac-
cess to plant input/output (I/O), controller states,
and controller parameters. Most importantly, and
for safety reasons, in high speed AMB applications
the controls engineer needs to get access to this data
from a safe location which may or may not necessarily
be even in the same building.

An important aspect of RTS is the effectiveness of
resource allocation strategies so as to satisfy strin-
gent timing-behavior requirements [15]. This is es-
pecially true for AMBs. The proper design of an
RTS for control requires solutions to many interest-
ing problems - for example, specification and timing



behavior; programming language semantics dealing
with time, and the use of timing constraints. The
correct functioning of the system depends upon an
implementation which evaluates the logical power of
different forms of timing constraints in solving vari-
ous coordination problems and determines the least
restrictive timing constraints sufficient for the control
system. Unlike other combinatorial scheduling prob-
lems in operations research which mostly deal with
one shot tasks, in real time control systems, the same
task may recur very often, either periodically or at
irregular intervals, and may have to synchronize or
communicate with a number of other tasks [16]. This
is the case with AMB control systems such as AMB
supported artificial hearts [8, 2, 1] and high speed
energy storage flywheels for powering communication
satellites [4, 13].

The primary objectives of RTS design for auto-
matic controls include 1) automation of the design
and implementation process by exploiting optimizing
transforms and scheduling theory, and 2) the synthe-
sis of highly efficient code and customized resource
schedulers from timing constraint specifications. Re-
liance on clever hand coding and difficult to trace
timing assumptions are major sources of bugs in real-
time programming that can be avoided with recent
advances in hard real time structured real time oper-
ating systems.

The RTS literature is vast. Fortunately, AMB con-
trol applications are best served by basic understand-
ing of scheduling based results. Of these, there are
two types, both static (the scheduler has full knowl-
edge of previous, present, and future tasks, as would
be the case for a fixed rate controller) and dynamic
(the scheduler has full knowledge of previous and cur-
rent tasks, but does not know the time nor the num-
ber of tasks that will arrive in the future) [12, 10, 16].
This paper does not attempt to review all of these al-
gorithms since some of these do not lend themselves
too well for AMB applications. Instead, this paper
concentrates on one of the so called “static” schedul-
ing algorithms: “Fixed Priority Scheduling” (FPS).
This scheduling algorithm is especially useful for pe-
riodic tasks, as would be the case in the implemen-
tation of most fixed rate controller algorithms such
as AMB suspension controllers. This algorithm is
used extensively in the development of a hard real
time controller implementation platform, the Real
Time Controls Laboratory or RTiC-Lab (pronounced
Arctic-Lab).

The following sections are set up as follows. First,
RTS and their associated basic scheduling results are
presented. Second, RTiC-Lab is presented. Finally,
implementation results are shown which demonstrate
the predictability of RTiC-Lab.

2 Real Time Systems

“Real Time Systems”, are systems in which the tem-
poral correctness of the system is at least as impor-
tant as the logical correctness of those results. For
example, in a high speed AMB, it is imperative that
our fixed rate suspension controller provide both a
strict sampling rate of 8 kHz and the correct control
signal – irrespective of the CPU’s load . Failure to do
so could cause our AMB to catastrophically fall out
of suspension.

Unfortunately, there are several misconceptions
[15] regarding RTS which have inhibited the AMB
and controls communities from both identifying the
need for, and correctly implementing RTS technology.
Four of the perhaps most commonly cited misconcep-
tions are:

1. faster hardware implies that all deadlines will be
met : while it may be true that faster hardware
will minimize the mean response time of our sys-
tem, it does not necessarily imply that the sys-
tem will be predictable [17], that is, that it will
execute precisely at the requested sample rate.

2. RTS are equivalent to control systems pro-
grammed in assembly coding, interrupt program-
ming, and complex device drivers: one of the
most important research aspects of real time sys-
tems is that researchers concentrate on devel-
oping powerful scheduling algorithms and tools
that will satisfy all hard timing constraints. Con-
sequently, a controls engineer can now use high
level code such as Ada and C instead of a more
arcane and platform specific assembly language.

3. RTS are all developed in an ad hoc fashion:
RTS research concentrates on developing power-
ful, flexible, and structured techniques that for-
malize the actual development and implementa-
tion of RTS. Many structured tools – such as
hard real time operating systems – now exist
to help develop, validate, and simulate real time
systems.

4. real time is equivalent to fast computing : “fast”
is relative. That is, in the AMB community,
a sampling rate of 100 µs is considered “fast”.
In the robotics community, a sampling rate
of 1, 000 µs is already considered “fast”. In
the geo-sciences community, a sampling rate of
86, 400, 000 µs (1 day) is considered “fast”. In
all three systems, it is imperative that tasks exe-
cute at precisely the given time or else the results
may no longer be valid. Consequently, all three
systems are categorized as “real time systems”.



The RTS community focuses on many aspects of
real time research such as real time hardware, soft-
ware, validation, and simulation. We, as end users,
do not need to understand all of these and must rely
on the RTS community to develop most of these tech-
nologies. However, it is imperative that we under-
stand, as a minimum, some very powerful schedul-
ing results which greatly aid in the design process
of RTS and consequently in the implementation of
hard-timing control environments.

Present day AMB applications can best be served
by a 1955 job-shop scheduling result [5, 6, 16]: The
maximum lateness and maximum job tardiness are
minimized by sequencing the jobs in order of non-
decreasing due dates. This dynamic algorithm, re-
ferred to as the Earliest Deadline First (EDF) algo-
rithm, is optimal for uniprocessor systems. Optimal-
ity is quantified by: An optimal scheduling algorithm
is one that may fail to meet a deadline only if no
other scheduling algorithm can meet it.

FPS is a scheduling scheme where tasks are as-
signed a priority, or relative importance. Higher pri-
ority tasks are given precedence over lower priority
tasks, and tasks having the same priority level are
assigned into the CPU on a “first come, first served”
scheme. Tasks may only preempt lower priority tasks
and are assumed to be completely independent of
each other.

For present day AMB applications, a priori assign-
ment of task priorities will best meet the hard dead-
lines [9] via the Rate Monotonic Algorithm (RMA)
[11]. This static algorithm assigns priorities to each of
the tasks in the following fashion: The priority of the
task is inversely proportional to its period. In other
words, under this assignment policy, tasks having the
smallest period (highest frequency) – as would be the
case for a suspension controller in an AMB – would
have the highest priority. Of most importance is that
this algorithm is optimal among FPS algorithms for
RTS, and that it can be applied for any number n of
tasks.

Most importantly, using the RMA algorithm, it is
possible to – a priori – determine if a set of n tasks
will meet all their hard deadlines [11] by the sufficient
condition:

n∑
i=1

Ci

Pi
≤ n(21/n − 1) (1)

where Ci is the worst case execution time of the task,
Pi is the period of the task, and the left hand side
of (1) is called the total CPU utilization. Note that
as the number of tasks becomes infinite, all tasks will
meet their deadlines as long as the utilization remains
below 69.34%. Thus we now have an effective method
of correctly sizing a CPU for a given application.
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Figure 1: Overview of the Real Time Controls Labo-
ratory network environment

Unfortunately, RMA is optimal only for periodic
and independent tasks. And, since there is a large
need for communication between controller tasks in
an AMB (for example, controller states from the
suspension task are communicated to a second task
which in turn plots the data to the screen), then
the RMA algorithm becomes limiting for hard real
time applications, sometimes with catastrophic ef-
fects [7]. Fortunately solutions have been presented
[14] to curve this problem. Interested readers and
system developers are strongly encouraged to read
further on this topic.

In what follows, an AMB control solution has been
implemented in a novel controls implementation plat-
form using RTLinux and a set of networked personal
computers.

3 The Real Time Controls

Laboratory, (RTiC-Lab)

Control of AMBs require an exhaustive tuning and
characterization process during the early stages of the
AMB life. RTiC-Lab, is explicitly designed to be used
not only during these early stages of controller design
and plant characterization, but also during subse-
quent monitoring and control. Designed and tested at
the University of Virginia’s Rotating Machinery and
Controls Laboratory, it provides an environment in
which to implement controller algorithms while pro-
viding real time access to controller states, plant out-
puts, controller actions, controller parameters, and
other controller information. All this information can
be plotted and filtered – via user defined filters – in
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Figure 2: Example of the applicability of RTiC-Lab
on an AMB system.

soft real time. The user can further filter the nec-
essary data either in soft real time or post mortem.
Last and most importantly, the controller parameters
can be updated in real time through a user-defined
graphical user interface.

RTiC-Lab attempts to incorporate several of the
most critical RTS results in order to make RTiC-
Lab a powerful controls implementation platform for
AMBs and any other system that can use both fixed
rate and event driven controllers. Priority assignment
has been employed with Liu and Layland’s RMA
scheduling algorithm. Data is transmitted from the
hard real time tasks to the graphical user interface
via real time FIFOs.

RTiC-Lab has two very important features not
found in any other real time controls implementation
platforms. The first and most important one is that
RTiC-Lab is and will be – as its underlying Linux and
RTLinux platforms – Open Source Software released
and protected under the Free Software Foundation’s
General Public License. That is, users of RTiC-Lab
can download the source code, use it, enhance it, and
share it with their colleagues. The second feature
is that RTiC-Lab is designed to be distributed over
a common network of personal computers. That is,
RTiC-Lab can be used over a common 10/100 Mb
ethernet network.

The general scheme used in the design of RTiC-
Lab is shown is Figure 1. A devoted display or host
computer (DHC) is networked via 10 or 100 Mb/s
TCP/IP network to a set of devoted controls com-
puters (DCCs).

The controls engineer sits at the DHC (which may
or may not be at the same room or even building as

the DCCs) and coordinates, codes, and synchronizes
all DCCs from the DHC. Run time parameters, such
as sampling rate, startup delay, and networking pa-
rameters can be set for each of the DCCs from the
DHC.

Each of the DCCs is a stripped down computer sys-
tem having no keyboard, mouse, video card, or mon-
itor. These only have both the necessary I/O cards
which are used to interface to the plant hardware and
the necessary ethernet card to communicate with the
DHC.

An AMB example of RTiC-Lab is shown in Figure
2. A single DHC interfaces with three DCCs which
in turn interface to the AMB rotor system. The first
DCC handles all radial control of the AMB, while a
second (and slower) DCC controls the thrust direc-
tion of the AMB, and a third DCC is used to add
either some excitation or synchronous forces to can-
cel out rotor imbalances at the midspan. Both con-
troller parameters can be updated through the graph-
ical user interface, and all data is plotted in soft real
time at the DHC.

In the event that the controlled plant is both com-
putationally simple and safe enough to be handled
exclusively in a single computer, then RTiC-Lab will
collapse into one single computer to control the entire
plant. Stated differently, the same computer both im-
plements the controller in hard real time and saves,
plots, and updates parameters in soft real time.

In accordance with the RT-Linux paradigm [3],
RTiC-Lab separates the AMB controller into the hard
real time or “embedded” part and the soft real time or
“reactive” part. The embedded part of the controller
(resident exclusively in the DCCs) includes all tasks
having hard timing constraints: 1) the AMB suspen-
sion controller(s) (both periodic and event driven),
2) a software watchdog, and 3) a set of interrupt ser-
vice routines that are used for communication with
the reactive task. The reactive task (resident in both
DHC and DCCs) is a multi-threaded, user-space ap-
plication which runs within the Linux kernel. In a
standalone system, the reactive task would perform
the following functions: 1) communicate with the em-
bedded tasks via RT-FIFOs, 2) display a graphical
user interface for the user, 3) perform error check-
ing of the user’s controller code, 4) send parameter
updates to the embedded tasks as requested by user,
and 5) plot data to either screen, save to a file, or
print to stdout. Alternatively, in a multi-node envi-
ronment, the DCCs’ reactive system is charged with
communicating with both the local embedded tasks
via RT-FIFOs and with the remote DHC through the
LAN. It would also be used to trap some vital errors
from the local real time tasks, such as missed dead-
lines. The DHC – which does not necessarily have
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Figure 3: Maximum sample period error for the sus-
pension controller as a function of spin speed

real time support – would then receive the incoming
data through the network and would perform all of
the necessary graphical duties as described above. In
addition, the DHC would be used to coordinate all
networked DCCs.

4 Implementation Results

Of most importance to the implementation of an
AMB suspension controller is the predictability of
RTiC-Lab. Figure 3 shows the sampling error ob-
tained on a Pentium III 600 MHz computer run-
ning at 8 kHz the following algorithms: 1) a full µ-
synthesis, 44th order, four input, four output, state
space, radial magnetic bearing controller, 2) a strictly
proper PID axial magnetic bearing controller, 3) a
bearing autobalance algorithm, and 4) a parallel port
based key phasor monitoring task. Note that items
1, 2, and 3, above, all run in one task, while item 4
runs as a separate task. As can be seen from the plot,
the suspension controller sampling error is bounded
to well below 1% even at simulated spin speeds ap-
proaching 40, 000 RPM.

The next point of interest is determining the maxi-
mum error of the sampled spin speed. Figure 4 shows
the error of the sampled simulated spin speed for the
same controller as above. As can be seen, the max-
imum error is below 0.5% at simulated speeds ap-
proaching 40, 000 RPM.

Last, and no less importantly, RTiC-Lab must
satisfy the logical correctness of the aforementioned
controller. Figures 5 show the theoretical and the
measured input/output characteristics of the mu-
synthesis controller of the low x to low x, low x to
high x, high x to low x, and high x to high x input
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Figure 4: Maximum RPM error of the sampled speed
as a function of spin speed

to output ports of the controller, respectively. The
measured response denotes the results obtained from
a sine sweep as measured at the I/O ports of the
computer by use of a Stanford Research Systems two
channel dynamic signal analyzer (Model SR785). As
can be seen from the plots, both the theoretical and
measured values match perfectly.

5 Conclusion

Basic understanding of RTS scheduling results is nec-
essary towards efficient and successful implementa-
tion of predictable real time controllers for AMB sys-
tems. Namely, for periodic tasks, such as fixed rate
controllers, it has been shown that priority assign-
ment for a FPS algorithm via the Liu and Layland
RMA will lead to predictable control systems for
AMBs. Most importantly, via this priority assign-
ment policy, it is possible to implement multiple tasks
that are used not only for the actual suspension con-
trol but also for real time monitoring, data logging,
data display, network communications, and controller
parameter updates.

In order to simplify controller implementation by
use of these scheduling techniques, the Real Time
Controls Laboratory, or RTiC-Lab, was developed
at UVA/ROMAC which aids in the controller imple-
mentation process. It uses both Linux and Real Time
Linux as the implementation platform. And, consis-
tent with the underlying operating system, RTiC-Lab
is Open Source.

AMB controller developers who are interested in
using this software are encouraged to download the
software from http://www.people.virginia.edu/-
ẽfh4v. They are further encouraged to contribute
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Figure 5: Computer’s I/O characteristics. Theoretical and measured amplitudes versus frequency

to its development by sending modifications, drivers,
modules, and enhancements to efhilton@alum.-
mit.edu.
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