
 

ABSTRACT
In this paperµ-synthesis is applied to a flexible and gy-
roscopic AMB system. A design methodology is pre-
sented which covers the practical issues of robust
control like the selection of weighting functions, mod-
elling of uncertainties and controller reduction. The
modelling of the system is based on a analytical model
adjusted to measured frequency responses. Special at-
tention is paid to substructure modes. The focus of this
paper is the experimental evaluation of the perform-
ance. Sine sweeps were performed at rotational speed
and good agreement of the measured performance with
the predicted robust performance is reached. The test rig
finally was spun up past the first flexible critical speed.

INTRODUCTION
Robust control design methods, particularly theµ-syn-
thesis, have great potential for AMB applications, but
have not found their way to application yet. Implemen-
tation results are only reported by Fujitaet al. (1992),
Nonami and Ito (1994), and Fittro and Knospe (1998) so
far. Fujita considers the non-rotating case only. Nona-
mi’s design is based on a rigid-body model. Only Fittro
gives experimental results in frequency domain. A sys-
tematic experimental evaluation of the robust perform-
ance was not performed yet. Related work on non-AMB
applications giving experimental results are Steinbuch
et al. (1998) and Van den Braembussche (1998).
The AMB controls test rig at the University of Virginia
is designed to reflect the properties of energy storage
flywheels, namely the gyroscopics and the structural
flexibilities of the rotor and the frame, and to serve as a
platform for controller design investigations. The flexi-
ble rotor is equipped with a overhung gyroscopic disc
(Fig. 1) and aligned vertically. The substructure is de-
signed to be flexible as well, to simulate a satellite plat-

form.
In order to operate the rotor in a range up to 12000 rpm,
a µ-synthesis controller was designed and the experi-
mental results are presented in this paper. It is based on
the design procedure developed in Schönhoffet al.
(2000). This procedure unifies the required design steps
for systems with structural flexibilities and aims a easy
transferability to different applications.

FIGURE 1: Schematic of the rotor

MODELLING
The model of the plant was first derived analytically and
then fine tuned based on frequency response measure-
ments of the plant. Since the plant itself is unstable, the
system was stabilized by an initial PID controller and
the closed loop response was measured. The computa-
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tion of the plant model from the closed loop response is
described in the section “implementation results”.

FIGURE 2: Block diagram of the plant model with
black-box model of the substructure

The plant model for the controller design covers the
structural dynamics of the rotor and of the substructure,
the magnetic bearings, the amplifiers and the control
computer (Fig. 2). The structural dynamics of the rotor
was first modelled by finite element modelling and then
fine tuned based on experimental results. The rotor model
includes 4 rigid-body and 6 flexible modes. A model of
the gyroscopic effects was also obtained from finite ele-
ment analysis and validated at rotational speed. Fig. 4
shows the Campbell-diagram of the unrestrained rotor.
Since the substructure had a significant impact on the
system stability and performance, also a substructure
model was included. It was constructed solely based on
experimental data by curve-fitting of the measured fre-
quency responses. 12 modes have been taken into consid-
eration. Since controller order reduction methods are
utilized, no attempt was made to reduce the plant model
in advance of the controller design.
The magnetic bearing is described by a linearized dis-
placement-force and current-force relation
(Rockwell, 1996). These parameters were tuned to match
the measured frequency responses of the plant. Addition-
ally a negative stiffness of the motor had to be taken into
account.
No specific dynamic model for amplifier, the inductance

and further electronic com-
ponents was set up. The
phase lag of these compo-
nents including the phase
lag of the zero-order hold
of the D/A-converter and
the computation time of
the digital control compu-
ter were also determined
from the measured fre-
quency responses and
modelled by a total time
delay of 0.625 ms. The
time delay was approxi-
mated by a 2nd order Pade
allpass filter per input. The
final order of the plant
model is 52.

FIGURE 4: Exemplary channelG(hy,hy) (from higher
bearingy-direction to higher sensory-direction) of the

 plant model at 0 rpm

CONTROLLER DESIGN

Performance specification
Specifying the performance requirements forH∞-mini-
mization means bounding the transfer functions of the
closed loop. This is a non trivial task, neither in terms of
H2-performance nor in terms of reasonable time response
of the closed loop. To formulate the specifications, a
proper insight in the transfer functions of the closed loop
is required.

Figure 5: Closed control loop

Fig. 5 depicts the control loop, wherey are the displace-
ment measurements,r the reference commands,e the dis-
placement errors,u the current command to the
amplifiers, d a assumed disturbance andn the sensor
noise. Each of these variables consists of four compo-
nents for each of the two axes per bearing. The transfer
function matrix

(1)

gives the relation between the inputs and outputs of the
closed loop.
The minimization of the transfer functionS(jω)G(jω) is
the main objective. It can be viewed as the “compliance”
of the magnetic bearing. A constant bound is put on this
function in order to achieve a low quasi-static compliance
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and to enforce proper damping of the first flexible mode
of the rotor (Fig. 7). Levelling off the bound at low fre-
quencies yields integral action of the controller.
The actuator effort is described byC(jω)S(jω). A bound
on this transfer function avoids actuator saturation.
C(jω)S(jω) has further to be limited for two reasons: First
(C(jω)S(jω))-1 determines the robustness to additive un-
certainties of the plant and is desired to be high. Second
it determines the shape ofC(jω) at high frequencies, be-
cause . A low pass characteristic of
C(jω) rejects sensor noise and is advantageous for con-
troller order reduction and discrete time implementation.
A second order low pass bound was chosen (Fig. 7).
Even though bounding ofS(jω)G(jω) andC(jω)S(jω) is
sufficient to set up the optimization problem, limiting the
sensitivity function S(jω) and the inverse sensitivity
function T(jω) additionally is very useful to obtain rea-
sonable controllers. A sensitivity functionS(jω) > 1 indi-
cates that the controller is amplifying the disturbances
entering the system. For lightly damped flexible struc-
tures, putting a strict bound onC(jω)S(jω) will cause the
resonances ofG(jω) to appear inT(jω) with high peaks.
This is undesired in all three meanings ofT(jω) resp.
Ti(jω): the reference action, the actuator response to dis-
turbance and the transmission of sensor noise to the con-
trolled variable. For details on the weighting functions
see Schönhoffet al. (2000) and Van den Braembussche
(1998).
To realize this SG-CS-S-T weighting scheme, the inputs
w andd and the outputsy, e andu were chosen and aug-
mented with the corresponding weighting functions
Wr..u:

. (2)

The weighting functions were designed to realize the de-
sired bounds, e.g. . All weights are
chosen to have diagonal structure and equal diagonal el-
ements.

Uncertainty modelling
Robustness to parameter variations of the plant and to
modelling errors is a requirement for practical control.
Here the controller has to cope with
• uncertainty in the modelling of the flexible structure,
• variation of the natural frequencies due to the gyro-

scopic effect and
• changes in the magnetic bearing parameters.
Modelling errors in lightly damped flexible structures are
typically due to small mismatches in the resonances.
Since even small mismatches can cause large additive re-
spectively multiplicative errors, they are modelled as par-
ametric uncertainties in natural frequencies (Balas,

Young, 1995). Assume that the system matrixA of the ro-
tor and substructure subsystem of the plant model is
transformed by T to a real modal representation

, where

(3)

is the block for theith mode on the diagonal of
and is the natural frequency of this mode with the rel-
ative uncertainty . The modal damping is assumed
to be constant, since it turned out to have no relevant in-
fluence on the controller design. Linearizing the term

to , which is valid for the small
uncertainties assumed,  can be rewritten as

(4)

and the uncertainty can be represented in a LFT a single
real uncertainty . Here an uncertainty of % in all 18
flexible modes is considered.
The uncertainty in natural frequencies already covers the
variation of the natural frequencies due to the gyroscopic
effects. But more structured in the sense ofµ-synthesis is
the treatment of the gyroscopic effects as an uncertainty
itself. Therefor the system matrixA(Ω) of the plant, de-
pendent on the rotational speedΩ, is considered as nom-
inal matrix plus a gyroscopic term linear inΩ:

. This uncertainty can be represented
in a LFT with the number of repeated uncertainty as a the
rank of AG, e.g. by singular value decomposition ofAG
(Balaset al., 1995, 4-20). The rank ofAG is equal to the
number of flexible modes of the rotor plus the number of
tilt rigid-body modes, here 6+ 2 = 8.
The robustness to variations in the magnetic bearing pa-
rameters is a further crucial issue. The parameters depend
significantly on the operating point and vary with dis-
placement and bearing coil currents. Since the complex
weighting scheme, used in this design, already guaran-
tees robust stability to large additive uncertainties by
boundingCSand to large multiplicative uncertainties by
boundingT, the parameter variations were not taken into
account explicitly as suggested in Namerikawa, Fujita
(1998). Theoretical and experimental analysis of the con-
trol loop have confirmed the robustness.

µ-Synthesis
Two different designs were performed: The first design
considers uncertainties in natural frequencies only. It was
designed for an operation point of 10000 rpm in order to
optimize the design for passing the critical speed. The
augmented plant has 72 states, a unstructured per-
formance block and 18 real scalar uncertainties in the nat-
ural frequencies.
The second design additionally includes the gyroscopics
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as uncertainty. The augmented plant increases by 8 addi-
tional real repeated uncertainties.
The controller synthesis was carried out using the D-K-
Iteration (Balaset al., 1995). To perform the D-K-Itera-
tion, several measures had to be taken to avoid numerical
problems. Two otherµ-synthesis approaches, the (D,G)-
K- and theµ-K iteration were investigated to take advan-
tage of the real and repeated structure of the uncertainties,
but did not converge in this case due to numerical prob-
lems. Details on the numerical issues are given in Schön-
hoff et al. (2000).
The first con-
troller reached
a µ-value of
1.06. µ-analy-
sis for different
rotational
speeds was
performed to
determine the
stability and performance of this controller vs. rotational
speed (Fig. 6). The controller turned out to be stabilizing
up to 25000 rpm. Theµ-values of the second controller
treating the gyroscopics as an additional uncertainty are
given in Table 1 dependent on the considered range of
operation speeds. The order of the final controllers were
in both cases larger than 100.

FIGURE 6: Robust performance vs. rot speed for the
first design

Controller order reduction
In order to achieve high accuracy, the pant was modelled
without respect to the model order. But as well as accu-
rate modelling is necessary for reliable application, a low
order of the controller is a prerequisite for economic real-
isation. Because the controller is of the order of the aug-
mented plant plus the order of the D-scales added by the
D-K-iteration, this leads to a contradiction that can only
be solved by controller reduction methods.

In order to reach the maximum degree of reduction, it is
straight forward to address the preservation of robust per-
formance

(5)

directly, whereC is the original controller and is the
reduced one. By replacingµ with its upper bound and us-
ing the D-scalings as in D-K-iteration, be-
comes and the minimization problem
can be formulated in terms of rational transfer functions
(Rivera, Morari, 1992):

. (6)

This can directly be tackled by the frequency weighted
balanced reduction in closed loop configuration (Wortel-
boeret. al., 1999). A reduction from an order higher than
100 to 44 is reached here without significant loss in per-
formance (1%).

IMPLEMENTATION RESULTS
In this section experimental results for the first controller
design considering uncertainties in the natural frequen-
cies only are presented. The controller was implemented
on a PC using theRealtime LinuxbasedReal Time Con-
trols Laboratory (RTiC-Lab) software (Hiltonet al.,
2000). It was executed at a sampling rate of 8 kHz.
The test rig was successfully spun up to 12000 rpm and
three critical speeds, two rigid-body and one flexible
were passed. The flexible critical is at about 9500 rpm. It
turned out that the controller provides high damping for
all three modes and therefore the vibration is well within
the acceptable range (Fig. 9). The maximum of the actu-
ator effort is approximately 0.6 A, where the actuators
become saturated at 2 A.
In order to evaluate the performance experimentally, sine
sweeps were performed at two rotational speeds, 0 and at
6000 rpm. A sinusoidal excitationd was superposed to
the control output and the displacementy was measured.
Fig. 7 shows the maximum singular value com-
puted from the measured frequency response matrixSG
at 6000 rpm. It is compared to the nominal transfer func-
tion from the model. Additionally the bounds given by
the weighting functions are shown. The remaining fre-
quency responses of the closed loopCS, S, T andTi ac-
cording to (1) were computed from the measured
frequency responseSGand the open-loop measured fre-
quency response of the controllerC according to the rela-
tions T = (SG)C, Ti = C(SG), S = I -T, (CS) = CS and
G = S-1(SG). They are also depicted in Fig. 7.
Since the comparison with the nominal model does not
answer the question, if the predicted robust performance
is reached, the maximum singular value of the total per-
formance is processed from all measured and computed
frequency responses multiplied with the weighting func-
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tions according to (2). This is shown in Fig. 8 for the
measurements at 0 and 6000 rpm and compared to the ex-

pected robust performance obtained byµ-analysis at the
particular operation points. Note that both points of oper-

10
0

10
1

10
2

10
−2

10
−1

10
0

S(jω)*G(jω)

frequency [Hz]

m
ax

im
um

 s
in

gu
la

r 
va

lu
e

σ(S(jω)G(jω)) math model             
σ(S(jω)G(jω)) sine sweep             
σ([W

y
(jω);W

e
(jω)]*W

d
(jω))−1

10
0

10
1

10
2

10
0

10
1

10
2

frequency [Hz]

m
ax

im
um

 s
in

gu
la

r 
va

lu
e

C(jω)*S(jω)

σ(C(jω)S(jω)) math model
σ(C(jω)S(jω)) sine sweep
σ(W

u
(jω)*W

r
(jω))−1  

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

frequency [Hz]

robust performance from model µ(F
l
(P,C))

measured performance σ(F
l
(P,C))      

10
0

10
1

10
2

10
−1

10
0

10
1

T(jω) and T
i
(jω)

frequency [Hz]

m
ax

im
um

 s
in

gu
la

r 
va

lu
e

σ(T(jω)) math model  
σ(T(jω)) sine sweep  
σ(W

y
(s)*W

r
(s))−1      

σ(T
i
(jω)) math model

σ(T
i
(jω)) sine sweep

σ(W
u
(s)*W

d
(s))−1      

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

frequency [Hz]

robust performance from model µ(F
l
(P,C))

measured performance σ(F
l
(P,C))      

FIGURE 7: Measured and nominal frequency responses
of the closed loop for the firstµ-synthesis controller and their bounds at 6000 rpm

FIGURE 8: Measured performance (maximum singular values of the augmented plant) and robust performanceµ of
the closed loop for the firstµ-synthesis controller at 0 and 6000 rpm
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ation, 0 and 6000 rpm are outside of the design point at
10000 rpm. Peaks occurring inS and CS and

can partly be explained by numerical singu-
larities in processing the measured data. The remainder is
due to unmodelled substructure modes. The performance
decrease at low frequencies for the measurement at
6000 rpm is caused by the negative stiffness of the rotor.

FIGURE 9: Run down from 12000 rpm

Since the robustness to changes in the magnetic bearing
parameters is crucial issue, the performance of the closed
loop using was analysed for different bias currents. No
significant performance degradation could be identified
in a range from 0.75 A to 2.5 A, where 2 A is the nominal
bias current.

CONCLUSIONS
In this paper, we developedµ-synthesis controller for a
flexible AMB system with severe gyroscopic effects and
substructure modes. The utilized design methodology
overcame the practical issues involved in robust control-
ler design. In particular modelling errors were considered
in terms of uncertainties in the natural frequencies and
the gyroscopic effects were treated as uncertainty as well.
Using this controller, the test rig easily passed first flexi-
ble critical speed. Sine sweeps showed a good agreement
of the measured performance and the predicted robust
performance.
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