
ABSTRACT 
Sensorless sliding mode control of a single-axis 
pull-pull type magnetic bearing actuator is reported in 
this paper. The two electromagnets are driven by 
switching between a positive and a negative constant 
voltage. Two switching surfaces being indirectly 
available through the measurement of driving current 
and its change rate are constructed, but only one of 
which is available at any time. Sliding mode control 
using these two switching surfaces in turn is shown to 
be possible. Reaching condition and the stability of 
sliding dynamics are discussed. The sliding mode turns 
out to take place in a subregion of state space defined 
by s1(x)s2(x)≤0 rather than on a surface defined by 
s(x)=0 as in most standard cases. The mathematical 
results are verified by simulation and experiment. 
 
INTRODUCTION 
Sensorless and self-sensing control of magnetic 
bearings, though the resultant precision is lower than 
with sensors, are appealing for some applications due 
to hardware simplicity and cost-effectiveness. When 
the electromagnets are being driven by either voltage or 
current, the relationship between voltage and current 
takes the information of displacement and velocity. 
This provides a possibility of stabilization and control 
without using explicit displacement sensors. This 
approach is grouped into two categories [3]: sensorless 
and self-sensing. In the former case there is no direct 
effort of displacement information extraction and 
observers are mostly used, while in the latter case 
displacement is explicitly calculated. 
    For the sake of power effectiveness, switching 
power amplifiers are being widely used in magnetic 
bearings. In this case the electromagnets are switched 
between a positive and a negative constant voltage. 
This switching driving readily provides an environment 
for the implementation of sliding mode control. What 
is more, under such switching driving, some scalar 
functions of state variables are available through the 
measurement of current and its change rate, both being 

easier than the measurement of displacement. Using 
surfaces defined by these functions, sliding mode 
control may be possible without any displacement 
sensor. This paper explores this possibility and some of 
the associated problems. 
    Both sensorless/self-sensing and sliding mode 
control have been active topics in magnetic bearing 
research. Sensorless control using Luenberger state 
observers is presented as a nice application example of 
the well established linear systems theory [1]-[2]. 
Various kinds of self-sensing have also been reported. 
Displacement is estimated using a reference model that 
runs in real-time [3], or by the driving frequency under 
a hysteresis power amplifier [4], or by superposing a 
high-frequency sinusoidal current on the driving 
current [5]. Reports on sliding mode control of 
magnetic bearings are also found in the literatures. A 
discrete-time sliding mode controller is designed for a 
magnetic bearing for improving the robustness [6]. A 
sliding mode controller is used with a sliding mode 
observer for enhancing the stabilization and tracking 
performance [7]. Sliding mode control design 
equations dealing with various uncertainties are 
developed based on a magnetic bearing example [8]. 
Attention has also been paid to sliding mode control 
with integral compensation for achieving zero 
steady-state error [9]. This paper is more of sensorless 
control. Sliding mode control comes only as utilization 
of available equations under switching driving and 
switching driving itself. But it gives new facts in both 
sensorless and sliding mode control. 
 
MAGNETIC BEARING ACTUATOR 
A single-axis magnetic bearing actuator as shown in 
Fig. 1 is considered. A photograph of such a physical 
object is found in Fig. 3. In this section the equations of 
this object is given, which provides a basis for 
subsequent discussions. 
    In Fig. 1, the motion of the ferromagnetic moving 
object, which is of mass m, is limited in the x-axis only. 
The voltages u1 and u2 are taken as the input of the 
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plant. The external resistors of resistance R denote 
copper resistance of the coils and may include possible 
current-sampling resistors. It is assumed that the 
permeability of the magnetic material is constant, and 
the flux density over the air gap is uniformly 
distributed. It is also assumed that the effects of eddy 
current, flux stray and flux leakage are small. We 
ignore such effects in this paper. Then, the equations of 
the plant are [10] 
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where x0=g+l, l accounts for the effect of the finiteness 
of permeability, fd is the disturbance force, φ1 and φ2 
are fluxes due to i1 and i2 respectively, and A is the 
electromagnet pole face area. These equations, except 
for some minor differences, are also found in many 
literatures on magnetic bearings. 
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FIGURE 1: Schematic of Actuator 
 
 
    For succinctness in following discussions, let (1) 
be in normalized variables. Choosing a nominal biasing 
current I0, the variables are normalized as ξ=x/x0, 
η1=i1/I0, η2=i2/I0, θ=fd/mx0, ε1=u1/RI0, ε2=u2/RI0, 
ψ1=φ1/Φ0 and ψ2=φ2/Φ0, where Φ0=µ0ANI0/2x0 is the 
nominal biasing flux. With the normalized variables (1) 
becomes 
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where α=µ0AN2I0
2/4mx0

3 and β=2Rx0/µ0AN2. Concept 
about reasonable orders of the normalized variables is 
useful in subsequent sections. It is seen that |ξ|<1, ψ's 
and η's are both on the order of 1, and maximum 
possible values of ε's are on the order of 10 (probably 
greater than ten due to the requirement of a sufficient 
force slew rate). For most practical systems α and β are 
on the orders of 104 and 102 respectively. 
 
SENSORLESS SLIDING MODE CONTROL 
It is assumed that the internal of the dashed block in 
Fig. 1 is not accessible. We have only available the coil 
terminals for control. This may be an appropriate 
situation we face for sensorless control. We search, 
starting from (2), for equalities that at one side the 
quantity is useful for control while at the other side the 
quantity is readily or easily measured outside the 
dashed block. Rearranging (2c) with the term ξψ's 
alone on the left-hand side, we have 
 

(3), 222111 ψηξψψηξψ +−=−=  
 
Then, differentiating (3) with respect of time yields  
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It is seen that the left-hand sides of (4) are linear in 
displacement and velocity, and may serve as part of 
switching functions for sliding mode control (the other 
part is acceleration, as under voltage control the plant is 
of third-order). Besides, the variables on the right-hand 
sides are easily measured: current and its change rate 
are measured by connecting sampling resistors and 
inductors in series with the coils, both being outside the 
dashed block. However, as coefficients the fluxes and 
their change rates are not of constant values. This may 
cause problem. Even worse is that flux change rate 
cannot have a single sign all the time.  
    If driving current is limited to be unidirectional, 
then ψ1 and ψ2 can be nonnegative. If further a 
substantial biasing current is maintained, then the 
fluxes can be positive and relatively stable. Besides, if 
switching driving is used, which is in consistent with 
sliding mode control, then problems associated with 
the flux change may be relieved. Let the input voltages 
be switched between constant positive and negative 
voltages, that is, 
 

( ) ( ) )5(1,1 0201 µεµε RIURIU +=−=  
 
where U is a positive physical voltage, and µ∈{-1, 1} 
is a new control input. This is the constant voltage sum 
(CVS) configuration for maintaining the nominal 
biasing current I0 [10]. Note that (5) implies ε1+ε2=2. 
The physical driving voltages are switched between 
RI0+U and RI0-U. If U/RI0 is much greater than 1, then 
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between consecutive switching instants, dψ1/dt and 
dψ2/dt are close to some constants, since in (2b) 
compared with ε's the values of η's are much smaller. It 
is also noticed that the orders of {ψ1, ψ2} and {dψ1/dt, 
dψ2/dt} are 1 and 103 respectively, being desirable as 
coefficients of linear switching surfaces. Another fact 
to notice is that at any time either dψ1/dt or dψ2/dt has 
positive sign. This motivates an attempt of using 
equations (4a) and (4b) in turn, depending on the sign 
of µ, for sensorless sliding mode control. 
    Some effect of acceleration should be included in 
switching surfaces. To this end, (2c) is manipulated to 
yield 
 

( ) (6)211212 ψψξηηψψ ++−=−  
 
Substituting (6) into (2a) and assuming θ=0, we have 
 

( )( ) ( ) (7)2
211221 ψψαξηηψψαξ ++−+=��  

 
The flux sum ψ1+ψ2 is very close to 2 under CVS [12]. 
The second term on the right-hand side, which is linear 
in ξ, can be included in the displacement. Thus, 
C(η2-η1), where C is a positive constant, may be used 
in switching surfaces for acceleration. 
    Now, the above mentioned facts are pieced 
together to formulate our possible switching functions 
as 
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Equations s1=0 and s2=0 are surfaces in the state space 
when µ is constant. It is obvious from (4) that the 
switching functions s1 and s2 can be evaluated by the 
measurement of η1, η2, dη1/dt and dη2/dt. The 
coefficients in (8a) are all positive when µ=-1, and so 
are those in (8b) when µ=1. The attempted sliding 
mode control algorithm is thus constructed in discrete 
time as below. 
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It is noted that a continuous time version of (9) is also 
possible, but in discrete time it is easier to describe. It 
is assumed that the sampling rate is very high that there 
is no significant difference between discrete and 
continuous time implementations. In fact, a sampling 
rate of 100 kHz is chosen for both simulation and 
experiment in this paper. 
    One may wonder whether this algorithm works. It 
was tested in simulation and it did work. Then 
mathematical explanations were found and experiment 

was carried out. But here in this paper the mathematical 
analysis is given ahead of simulation and experiment. 
 
REACHING CONDITION 
The switching functions s1 and s2 are directly related to 
the flux change rates, which are not state variables. In 
order to facilitate the analysis we give equivalent 
switching functions that are functions of state variables 
alone. Because s1 is checked only when µ=-1 and s2 is 
checked only when µ=1, these switching functions can 
be redefined as 
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without any influence on the algorithm (9), where 
ρ=1+U/RI0 is the positive amplitude of the normalized 
voltage inputs. Hereafter s1 and s2 mean those defined 
in (10). It is not hard to see that under first-order 
approximation about the equilibrium point s1 and s2 
become identical and are linear functions of d2ξ/dt2, 
dξ/dt and ξ. With the redefined switching functions, the 
previous problem that flux change rate cannot have a 
single sign all the time is now transformed as only one 
of the switching functions in (10) is available at any 
time through the measurement of driving current and 
its change rate, except for instants µ being switched 
between -1 and 1. 
    For the algorithm (9) to work a basic requirement 
is that the conditions for the if's can actually become 
satisfied. It is therefore required that ds1/dt<0 when 
µ=-1 and ds2/dt>0 when µ=1. But this is not enough. 
For the reasons to be clear below, it is also required that 
ds2/dt<0 when µ=-1 and ds1/dt>0 when µ=1. It is 
therefore assumed that |dξ/dt| is bounded and U is 
sufficiently high such that the following conditions 
hold. 
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It will be seen bellow that this is the reaching condition 
for the sliding mode control. 
    In standard sliding mode control, the number of 
switching surfaces is equal to that of control variables. 
But here there are two switching surfaces while there is 
only one control input. It is generally impossible to 
keep both s1=0 and s2=0. The algorithm (9) can at most 
maintain s1 and s2 close to zero. It actually tries to get 
out of the situation s1s2>0 in the reaching phase. Then, 
if the switching is infinitely fast, it maintains s1s2≤0 in 
the sliding phase. Under infinitely fast switching, the 
running of the algorithm is more clearly seen: if s1<0 
and s2<0, then µ=1 until s2=0; if s1>0 and s2>0, then 
µ=-1 until s1=0; if s1≤0 and s2≥0, then µ is switched 
between -1 and 1 with 50% duty cycle; and if s1≥0 and 
s2≤0, then µ is switched between -1 and 1 such that s1 

Seventh International Symp.  on Magnetic Bearings, August 23-25 , 2000, ETH Zurich 313



and s2 just reach zero in turn. Thus, once s1s2≤0 
becomes true it will remain true in future time, and this 
indicates the entering of sliding mode. These switching 
laws are summarized in Fig. 2. It is not hard to notice 
that the reaching condition (11) must be true to 
guarantee the algorithm to run properly. 

Unlike standard sliding mode control where 
sliding occurs on surfaces or in subspaces of the state 
space, here the sliding occurs in a subregion of the state 
space. One may also notice, as shown in Fig. 2, that the 
reaching behaviors in the two reaching regions are 
symmetrical while the sliding behaviors in the two 
sliding regions are not. 
 
 

    

s1

s2

reaching

reaching

sliding

sliding

 
 

FIGURE 2: Reaching and Sliding Regions 
 
 
STABILITY OF SLIDING DYNAMICS 
In order for succinctness of equations, let 
ψ0=(ψ1+ψ2)/2 and ψ=(ψ2-ψ1)/2, referred to as biasing 
and actuating flux respectively. Similarly, let 
η0=(η1+η2)/2 and η=(η2-η1)/2, referred to as biasing 
and actuating current respectively. Note that at 
equilibrium we have ψ0=η0=1. From (2c) we also have 
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Let s0=(s1+s2)/2. Then it follows from (10) and (12)-(13) 
that 
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Adding the two equations in (2b) and substituting (5) 
and (12)-(13), we arrive at 
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Equations (14)-(15) are looked upon as state equations 
of a 3th-order system with inputs on the right-hand 
sides. It is seen that if s0=0 then the autonomous system 

is locally stable about the equilibrium point ξ=dξ/dt=0 
and ψ0=1. Since in sliding mode s1s2≤0 is true, which 
implies |s1+s2|≤|s2-s1|, that is 
 

(16)2
00 ξβψβψξξψ +−≤ �s  

 
Thus s0 is bounded by a quadratic function of the states 
and the sliding dynamics is locally stable. It is noted 
that though the system (14)-(15) is of 3rd-order, the 
sliding dynamics is of 4th-order. As (16) is an 
inequality, s0 is not a function of the state variables ξ, 
dξ/dt and ψ0. Thus d2ξ/dt2 in (14) is not a function of 
the state variables but a fourth state variable. The 
sliding dynamics is not completely determined by the 
switching surfaces. Even if the reaching condition (11) 
is true, the robustness associated with standard sliding 
mode control is lost. 
 
 
 

 
 

FIGURE 3: Experimental Actuator and Electronics 
 
 
 
SIMULATION AND EXPERIMENT 
A photo of the experimental actuator and electronics is 
given in Fig. 3. The parameters of the actuator are 
A=10-4 m2, N=324, m=0.324 kg, x0=0.35×10-3 m and 
R=0.27 Ω which includes a 0.5 Ω current-sampling 
resistance. The effect of the finiteness of permeability 
is not considered, that is, l=0. For other parameters, 
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I0=0.8 A, U=25 V and C=300 are chosen. Transformers 
of 1:1 with an inductance of 1×10-4 H in both sides are 
used for the measurement of current change rate. The 
sampling rate is 100 kHz. In simulation the same 
parameters are used. Both simulation and experiment 
are done first using (10) and then with a term z as 
determined by 
 

( ) (17)12 ηητ −−=+ Czz�  
 

being added to the right-hand sides of (10a) and (10b), 
thus canceling the term C(η2-η1) under steady-state. 
The value of τ is 5×10-3 s. This is the familiar concept 
of disturbance observation for achieving zero 
steady-state error under external disturbance force θ. 
    Simulation results of startup from ξ=-0.9, with 
other initial states being zero, are shown in Fig. 4. It is 
assumed that the motion axis is vertical, so that the 
mass of the moving part causes a static displacement in 
Fig. 4a. Experimental results are shown in Fig. 5. It is 
started by switching on the power from ξ=-1. Obvious 
differences are seen between Fig. 5a-b and Fig. 4a-b. In 
the experiment, apart from longer transient, the static 
stiffness is much lower. These differences are not 
further investigated. Fig. 5c-d show the response to a 
sudden removal of a load of 3.332 N at the time of 50 
ms. 
 

   

   
 

FIGURE 4: Simulation Results 
(a) startup without disturbance observer, (b) startup 

with disturbance observer 

    

   

   

    
 

FIGURE 5: Experiment Results 
(a) startup without disturbance observer, (b) startup 

with disturbance observer, (c) sudden removal of load 
without disturbance observer, (d) sudden removal of 

load with disturbance observer 
 

Seventh International Symp.  on Magnetic Bearings, August 23-25 , 2000, ETH Zurich 315



    It is observed in both simulation and experiment 
that performance is sensitive to some of the parameters 
and the symmetry of the two sides. The switching 
function values are close to zero under steady-state. 
But they are based on the canceling of two large values: 
the two terms on the right-hand sides of (4). A small 
percentage error on β used for the construction of the 
right-hand sides of (4) will cause large errors of s1 and 
s2 when the state is close to the equilibrium point. As a 
result, if β is not matched with the real value, then 
either the actual switching frequency becomes much 
lower than 100 kHz, or the equilibrium displacement 
splits into two on both sides of ξ=0. There is also 
considerable noise in the displacement, as can be seen 
in Fig. 5. The noise comes chiefly from the 
measurement of current change rate. 
 
CONCLUSIONS 
Under switching driving, as the input voltages are 
piecewise constant, some functions of state variables 
are available through the measurement of driving 
current and its change rate. Using these functions as 
switching functions, the system state is conducted 
towards and then kept in a subregion of the state space, 
in which the system dynamics is stable. Thus 
sensorless control is realized at the measurement of 
driving current and its change rate. 
    Sliding mode control is employed for magnetic 
bearings for the associated robustness. In this paper, 
however, sliding mode control is used due to the very 
format of the available information under switching 
driving. As a result, two switching surfaces are used in 
turn and the state is only kept within a subregion other 
than a subspace. Thus the good properties of sliding 
mode control are lost. The sliding dynamics is 
dependent on disturbance and plant parameters such as 
biasing current and amplitude of driving voltage. The 
noise in the experiment is also a problem. Further 
investigation may include the avoidance of these 
problems. 
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