
FLATNESS-BASED TRAJECTORY TRACKING CONTROL OF A

ROTATING SHAFT

Johannes v. Löwis, Joachim Rudolph
Institut für Regelungs- und Steuerungstheorie, Technische Universität Dresden, Germany

{loewis,rudolph} @erss11.et.tu-dresden.de
Jürgen Thiele, Frank Urban

AXOMAT GmbH, Berggießhübel, Saxony, Germany
axomat @t-online.de

ABSTRACT
Control of a magnetically levitated shaft used for drilling
non-circular holes is considered. For this drilling process
the shaft position must track a given reference trajectory
determining the shape of the hole. The flatness prop-
erty of the shaft model simplifies the design of a track-
ing controller. The system state as well as certain dis-
turbances (due to model inaccuracies and drilling forces)
are estimated by means of an observer. The usefulness
of the proposed flatness-based trajectory tracking con-
troller is demonstrated by experimental results obtained
with a spindle built at the German company AXOMAT,
Berggießhübel.

INTRODUCTION
One of the numerous advantages of using electromag-
netic bearings for the support of a rotating shaft is that
the shaft can be freely positionned on a prescribed path.
However, the control of the shaft allowing one to exploit
this feature is more involved than the stabilization at a de-
sired position which is fixed in space. In this contribution
we propose a flatness-based trajectory tracking controller
for a shaft to be used for precision drilling of non-circular
holes. In this application, the trajectories determine the
shape of the hole.

The nonlinear nature of the process dynamics is im-
portant in the tracking application. This nonlinearity is
due on the one hand to the rigid body dynamics and on
the other hand to the relations between coil currents and
forces. However, the nonlinear mathematical model is
differentially flat [1, 3]. This means that the time evo-
lution, i. e., the trajectories, of all system variables are
completely determined by the trajectories of a finite set
of variables, the so-calledflat output, the trajectories of
which can (in principle) be freely chosen (see also the
appendix for the notion of flatness). On the basis of this
mathematical property relatively simple controllers can
be designed. These controllers are most appropriate for

trajectory tracking. An additional feature of the nonlinear
control law is the suppression of the steady state currents
required with the classical linear control laws. This has
been proposed by J. Lévine, J. Lottin, and J.-Ch. Ponsart
[2, 4].

In this contribution the flatness-based control approach
is discussed and results are presented that have been
achieved with a rotating shaft designed at the German
company AXOMAT in Berggießhübel, Saxony [8]. This
device is equipped with five pairs of electromagnets
which support a rotating shaft in its radial and the ax-
ial directions. The system, thus, has eleven inputs: the
currents through the coils of the electromagnets and the
torque produced by the motor. However, only one force
is created by each pair of coils, and considering the re-
sulting force as the input reduces the number of controls
to six (the sixth one is the motor torque).

The paper is structured as follows: First we describe
the drilling-process in some detail and highlight some of
the problems to be tackled by the controller. We will also
state the mathematical model of the system, which forms
the basis for the controller design. The next section treats
the design of the flatness-based trajectory tracking con-
troller. The controller needs information about the sys-
tem state as well as disturbances acting on the system.
This information is obtained by an observer described in
the following section. Finally, we present some results
achieved with the proposed controller and some conclu-
sions are drawn.

PROBLEM FORMULATION AND DESCRIP -
TION OF THE PROCESS
Control of a drilling-process is considered, where the
hole to be drilled is non-circular — there is an indus-
trial demand for tools that can be used for drilling such
holes, for example by constructors of combustion en-
gines. Specifically, the problem is: given a circular hole
with a diameter of about 25mm, we want to give this
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FIGURE 1: Sketch of the given circular hole and the de-
sired elliptic hole

hole a slightly non-circular shape, for example an ellip-
tic shape with major axis length 25.10mm and minor axis
length 25.05mm. Figure 1 illustrates the situation.

For a circular hole the cutting edge of the tool has to be
moved on a circular path. This already happens when the
shaft rotates about an axis fixed in space. When drilling
an elliptic hole the path of the cutting edge must be an
ellipse. This can be achieved by moving the whole shaft
on an elliptic path in such a way that this motionis syn-
chronized with the rotationof the shaft. Thus, we have
a trajectory tracking problem which is rather demanding,
especially at high angular velocities of the shaft.

The setup is rather standard [7]. For further reference
we state the model equations:

m �X = Fx;p � Fx;n| {z }
Fx

+mgx (1a)

m �Y = Fv;y;p � Fv;y;n| {z }
Fv;y

+Fh;y;p � Fh;y;n| {z }
Fh;y

+mgy (1b)

m �Z = Fv;z;p � Fv;z;n| {z }
Fv;z

+Fh;z;p � Fh;z;n| {z }
Fh;z

+mgz (1c)

�2
� = �(lf;v �X)Fv;z + (lf;h +X)Fh;z ��1

_� _�

(1d)

�2
�� = (lf;v �X)Fv;y � (lf;h +X)Fh;y +�1

_� _ 

(1e)

�1
�� = D�: (1f)

HereX, Y , andZ are the coordinates of the center of
massG of the shaft in a frame (with axesx, y, andz)
fixed in space, at a point being considered as the “center”
of the device. The angles�, , and� describe the angular
position of the axes of a body-fixed frame. The coil forces
are denoted byF

�
, the motor torque asD�. (Here and in

FIGURE 2: The shaft with its radial magnetic bearings

the sequel bullets (�) are to be replaced by appropriate
indices.) The shaft has massm and moments of inertia
�1 and�2; lf;v and lf;h are the distances between the
planes of symmetry of the bearings (where the forcesF

�

are produced) and the pointG. The forces are related
with the currents by

F
�
= k

�

i2
�

(�
�
� s

�
)2

(2)

where the displacements from the magnetic centers are
given by

sv;y;� = �(Y + lf;v�) sh;y;� = �(Y � lf;h�)

sv;z;� = �(Z � lf;v ) sh;z;� = �(Z + lf;h )

sx;p = �sx;n = X:

(3)

The system has eleven inputs: the currents through the
coils of the electromagnets and the torque produced by
the motor (not shown in Figure 2). However, only one
force is created by each pair of coils, and considering the
resulting force as the input reduces the number of controls
to six: Fx; Fv;y ; Fh;y; Fv;z ; Fh;z ; D�. In the controller
the ten coil currents can be computed from the five forces.
This can be done in such a way that at each time instant
only the current creating a force in the direction of the
resulting force is set different from zero [2], see Figure 3.
In contrast to this, “bias currents” are required in classical
linear approaches. These lead to large Joule effect losses,
which can be avoided with the flatness-based nonlinear
control.

In two measurement planes (perpendicular to thex-
direction) atx = lm;v andx = �lm;h the deviationYm;v ,
Ym;h, Zm;v , andZm;h from center position is measured
in y- andz-direction:

Ym;v = Y + lm;v�; Ym;h = Y � lm;h�

Zm;v = Z � lm;v ; Zm;h = Z + lm;h :
(4)
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In the sequel we will refer to the plane atx = lm;v as
thev-measurement plane. These equations can be solved
for the generalized coordinatesY , Z, �, and . A fifth
sensor measures the axial positionX. Finally, the angu-
lar position� is measured by means of an incremental
encoder.

The above equations reflect the dynamics of the unper-
turbed system. Modelling errors (for example due to an
incorrect relation between the input currentsi

�
and the

corresponding forceF
�
) have the same effect as constant

disturbance forces when the task of stabilization at a con-
stant position is considered. These forces are estimated
by the observer presented later.

The rotation of the shaft is a source of disturbances
with a significant harmonic component:

� The induction motor not only generates the torque
driving the rotation about thex-axis but also creates
forces in radial direction.

� When the shaft moves on an elliptic trajectory, the
position iny- andz-direction is a sinusoidal function
of time. A significant part of error in the relation
between current and force can be expected to change
sinusoidally, too, since the relation depends on the
air-gap length (i. e., the position of the shaft).

� When the tool is cutting with varying depth the re-
sulting forces are expected to change sinusoidally.

All these harmonic disturbance forces have in common,
that their frequency is close to the rotational speed! and
that their amplitude and direction is unknown. Therefore,
the effective harmonic disturbance force needs to be esti-
mated for compensation purposes (see section “observer
design”).

FLATNESS-BASED TRAJECTORY TRACKING

CONTROLLER
Considering the equations of motion (1) auxil-
iary (acceleration) variables can be introduced as
ax; ay; az; � ; ��; ��:

max = Fx +mgx

may = Fv;y + Fh;y +mgy

maz = Fv;z + Fh;z +mgz

�2 � = �(lf;v �X)Fv;z + (lf;h +X)Fh;z ��1
_� _�

�2 �� = (lf;v �X)Fv;y � (lf;h +X)Fh;y +�1
_� _ 

�1 �� = D�:

(5)

With these we obtain the six decoupled subsystems

�X = ax; �Y = ay; �Z = az;

� = � ; �� = ��; �� = �� ;

for which linear controllers stabilizing the tracking error
dynamics can be designed. For example, for the position
X one uses

ax = �Xref � k1 _ex � k0ex; (6)

whereXref is a twice differentiable reference trajectory
and the controller gains arek0; k1 > 0. The tracking
errorex := X �Xref now satisfies

�ex + k1 _ex + k0ex = 0: (7)

Using (6), we compute the auxiliary accelerations
ax; : : : ; ��. From these accelerations the forces and the
torqueD� are obtained by solving the inhomogeneous
linear system (5). Finally, for a positive forceF

�
the con-

trol currenti
�;p in the corresponding winding is obtained

from

i
�;p =

s
F
�

k
�;p

(�
�;p � s

�;p); (8)

while the currenti
�;n (generating a negative force) is kept

zero. (For negative forceF
�

the currentsi
�;p = 0 and

i
�;n =

p
�F

�
=k

�;n(��;n � s
�;n) are used.) This ap-

proach avoids bias currents required in classical linear
approaches: at any instant there is a current in only one
coil of each pair [2], see Figure 3. The above design is
based on thedifferential flatnessof the model: The coor-
dinatesX;Y; Z; �; �;  form a flat output of the mechan-
ical subsystem [1] — see the appendix for the notion of
differential flatness.

The trajectory planning is simplified by the flatness
property. For example, if we want to transfer the cen-
ter of mass of the shaft within timet� from the center
position onto an elliptic trajectory we choose

Yref(t) = ry(t) cos
t

Zref(t) = rz(t) sin
t

Xref(t) =  ref(t) = �ref(t) = 0

�ref = !0 t+ �0 (!ref = !0 = const.)

(9)

for the components of the flat output(X;Y; Z; �;  ; �)
and

ry(t) = r�y p(t); rz(t) = r�z p(t)

with

p(t) = 10

�
t

t�

�3

� 15

�
t

t�

�4

+ 6

�
t

t�

�5

:

OBSERVER DESIGN
We only treat the design of an observer for theZ-
coordinate of the center of mass. Using the measure-
mentsZm;v andZm;h we can calculateZ according to
(4) and thusZ is assumed to be measured. The observer
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estimates the velocityZv = _Z and a disturbance acceler-
ationdz , caused by modelling errors.

The differential equation describing the motion inz-
direction is

�Z = az + dz ; (10)

whereaz is the acceleration of the center of mass due
to bearing forcesFv;z , Fh;z and gravity (see (5)). The
quantitydz = dzc + dzh is an unknown disturbance ac-
celeration which is assumed to be the sum of a constant
and a sinusoidal function of time with a known constant
frequency!d. Thus, the observer can be written as a sim-
ulator of the system extended by a stabilizing injection of
the observation error~Z = Z � Ẑ:

_̂
Z = Ẑv + l1 ~Z

_̂
Zv = az + d̂zc + d̂zh + l2 ~Z

_̂
dzc = l3 ~Z

_̂
dzh = ẑ5 + l4 ~Z

_̂z5 = �!2
dd̂zh + l5 ~Z:

(11)

With the third equation of (11) we estimate the constant
part ( _dzc = 0) and with the fourth and fifth equation the
harmonic part of the disturbancedz , i. e., �dzh + !2

ddzh =

0. The observer gainsl1; : : : ; l5 can be chosen such that
the dynamics of the observer error~Z is stable.

EXPERIMENTAL RESULTS
The controller has been implemented on a dSPACE
DS1103 controller board. The AXOMAT test bed has
then been used to test the proposed algorithms.

In the first experiment, the shaft is rotating with an
angular velocity of about 4800 rpm, i. e.,! = 500s�1

and no material is cut off. The reference trajectory for
the z-direction is of the typeZref(t) = rz cos!t with
rz = 75�m. In Figure 3 the reference trajectory and
the position measured in thev-measurement plane are
shown. Note that the figure is only a “snapshot” andt = 0

in the figure does not correspond to the pointt = 0 in
the reference trajectory. Note also that there is no “phase
shift” between the reference and the measured position,
i. e., synchronism between the measured position and the
reference trajectory has been achieved.

In the bottom plot of Figure 3 the currents in a hor-
izontal bearing are shown. The mapping from bearing
force to positive- and negative-direction currents is done
by means of the so-calledalmost current complementary
function(see [2]) rather than using (8). This essentially
means the following: for larger forces only the coil cur-
rent corresponding to the direction of the force is nonzero
while the other current is zero, for smaller forces both coil
currents are nonzero. This almost current complementary
function is used in order to avoid a singularity (atF

�
= 0)
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FIGURE 3: Trajectory tracking performance: while turn-
ing at about 4800rpm the horizontal position (Zm;v, i. e.,
measured in thev-measurement plane) is tracking a si-
nusoidal referenceZref with an amplitude of75�m, syn-
chronized with the rotation about thex-axis. Bottom plot:
currents in thez-direction coils in thev-bearing

related to the fact that the square-root function in (8) is
not differentiable forF

�
= 0. This would require the cur-

rent controllers to generate infinite voltages in order to
track current references corresponding to a zero-crossing
of the bearing force.

Figure 4 shows the result of a drilling experiment in
aluminium. The figure depicts the deviation of the shape
of the drilled hole from a circular shape. It is important
to note that the figure is not drawn to scale. The reason
for this is to magnify the outer30�m region where the
elliptic shape is carved. That is, the diameter of the inner
solid circle is about30mm and the difference between
major and minor axis length of the resulting ellipse is ap-
proximately46�m (50�m was desired). Using a dashed
line we have drawn an ellipse (with the major axis length
approximately50�m larger than the minor one into the
diagram). With this, the deviation of the shape of the
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FIGURE 4: Deviation of the shape of a drilled elliptic
hole from circular shape

hole from the desired elliptic shape can be judged. One
reason for the axes of the ellipse not being oriented in the
same direction as the axes of the diagram is that no spe-
cial care has been taken in order to adjust the directions
of the spindle with respect to the workpiece.

Figure 5 shows the result of an experiment where a cir-
cular hole was drilled. The deviation from circular shape
is less than2�m.

The measurements shown in Figure 6 were taken while
drilling a hole with an elliptic shape at about 4800rpm.
The plot at the top shows the measured and reference
position in thev-measurement plane. The reference tra-
jectoriesZref(t); Yref(t) for the center of mass of the
shaft and the measured positionsZm;v(t); Ym;v(t) are de-
picted in the bottom plot. Observe the excellent tracking
of the reference trajectories. The trajectory parameters
(rz; ry) = (25�m; 50�m) are chosen for an elliptic hole
with the major axis length50�m larger than the minor
axis length.

CONCLUSIONS AND FURTHER WORK
It has been shown that the proposed flatness-based path
tracking control for a magnetically levitated spindle
makes it possible to drill non-circular holes with high pre-
cision. Currently, drilling at higher angular velocities is
investigated. Another control objective, interesting espe-
cially at high rotation speeds, is the inertial autocentering
of the spindle which reduces the bearing forces due to
inertial imbalance of the shaft.

ACKNOWLEDGMENTS
This work is part of a research project financially sup-
ported by the European Union (EFRE) and the Free State
of Saxony (P-No. 5051).

m3 µ

FIGURE 5: Deviation of the shape of a drilled circular
hole from circular shape
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FIGURE 6: Top: position in thev-measurement plane
while drilling a hole with elliptic shape at 4800 rpm. Bot-
tom: corresponding reference trajectories and measured
position in vertical and horizontal direction
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APPENDIX
The notion of flatness has been introduced by M. Fliess,
J. Lévine, Ph. Martin, and P. Rouchon several years ago,
and there are now quite a few introductory references
available: e. g., [1, 3, 5].

We consider systems defined by ageneralized state
representationwith input u = (u1; : : : ; um) and (gen-
eralized) statex = (x1; : : : ; xn), i. e., by a set of first
order ordinary differential equations

_xi = Fi(x; u; : : : ; u
(�i)); i = 1; : : : ; n: (12)

Such a system is called(differentially) flat if there exists
a set(y1; : : : ; ym) of functions

yi = hi(x; _u; : : : ; u
(�i)); i = 1; : : : ;m; (13)

called aflat (or linearizing) output, with the following
two properties:

1. The components ofy are not related by any differ-
ential equation of the form:

P (y; _y; : : : ; y()) = 0

2. All the components of the statex and of the input
u can be calculated fromy and its derivatives. In
other words, these variables can be expressed, re-
spectively, as

xi = Ai(y; _y; : : : ; y
(i)); i = 1; : : : ; n

and

ui = Bi(y; _y; : : : ; y
(�i)); i = 1; : : : ;m:

As a consequence of the second property, also the deriva-
tives ofx andu, and all functions of those variables can
be expressed as functions ofy and its derivatives. The
trajectories fory can be chosen freely as a consequence
of the first property. Actually, by a choice ofy with m

components, i. e., with as much components as the input
u, the second property implies the first one.
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