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Abstract : In this paper, exact linearization technique
considering modal characteristics of a rotor is proposed
for AMB systems. The 1st and the 2nd modes of the
rotor are taken into account of the control system de-
sign. In order to wutilize modal characteristics of the
rotor with exact linearization technique, AMB control
systems are treated as MIMO systems. The effective-
ness of the proposed method is confirmed by levitation
experiments.

1 INTRODUCTION

Nonlinearity of magnetic force is one of difficulties for
AMB (Active Magnetic Bearing) control. To over-
come the difficulty, push-pull coil configuration has
been widely used. From the view point of control meth-
ods, almost all of the AMB control systems are however
designed as linear due to its simplicity and easiness of
the parameter tuning. In order to improve the perfor-
mance of the AMB control system, it is necessary to
develop a nonlinear control method for AMB.

Recently, exact linearization technique[l] has been
adopted to AMB control[2][3]. Conventional exact lin-
earization technique for AMB treats the AMB systems
as several SISO (Single Input Single Output) subsys-
tems of each axis. Input-State linearization is then car-
ried out for each SISO subsystem. However, due to
the lack of the consideration of the rotor dynamics, the
AMB control system based on the SISO subsystems of
each axis has the limitation at critical situations, e.g.
critical speed and spillover. The MIMO (Multi Inputs
Multi Outputs) AMB model considering the dynamics
of the rotor is essential for constructing the high perfor-
mance control system based on recent advanced control
theory.

In this paper, exact linearization technique consider-
ing modal characteristics of the rotor is proposed for
AMB systems. In order to utilize modal characteristics
of the rotor with exact linearization technique, AMB
systems are treated as MIMO systems, i.e. 4 inputs
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(current) and 4 outputs (gap), and the control system
is designed as MIMO system. The 1st and the 2nd
mode of the rotor are taken into account of the control
system design. The modal characteristics of the rotor
enables us to construct the high performance control
systems.

In case that AMB systems are treated as MIMO sys-
tems which consider the dynamics of the rotor, the
Input-State linearization technique cannot be applica-
ble because of the complexity of the models. It can
be proven that there exist no AMB nonlinear feedback
controllers which attain Input-State linearization. It is
however shown that the Input-Output exact lineariza-
tion technique can be applicable. Based on the results,
the nonlinear state feedback controller, i.e. the input-
s exchange and the coordinate transformation, is con-
structed. The MIMO Input-Output exact linearization
of AMB systems enables us to consider the dynamics of
the rotor on linear controller design procedure. It then
make recent advanced linear control methods, e.g. H,,
Gain Scheduling, applicable in wide range of the AM-
B systems variables. The effectiveness of the proposed
control method is evaluated by experiments.

2 MIMO MODEL OF AMB

MIMO model of AMB is here derived. The schematic
of a considered AMB rotor system is shown in Fig.1.
Let the mass of the rotor be M, the moment of inertia
J, displacement from the equilibrium point x5 and the
inclination angle of rotor 6. And let the displacements
at left and right AMB be z;;, and .., the displacements
at left and right sensor z;s and z,5 respectively. The
length from the rotor center of gravity to the bearing
is l, and the length from the rotor center of gravity to
the sensor is l;. The rotor is assumed to be rigid.
The following relationships then hold.

Tis =G — lseG’a (1)
Tps = T + lseGa (2)
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where (), X and Lg are constant parameters determined
by identification experiments, and W is the gap be-
tween the rotor and bearing at the equilibrium point.
Similarly, the inductance of upper and lower right coils
L, and L,o are

Q
L= — 4T, 7
LS X AW —a, T (™)
Lpe—9 L1 (8)
X+W+$U,~b

The magnetic levitation forces of left and right AMB
are denoted by f; and f, respectively. The dynamical
equations are then expressed as

Mic = —Mg+ fi+ fr, 9)
Jbe = (fr— f)ls. (10)

The currents of upper and lower coils of left AMB
are 1;; and 5, and the current of coils of right AMB
are i,1 and 7,2. The magnetic levitation forces f; and
f» are described as follows:

Li+in \° L—in \
—k 1 l1>_k<2_l2)711
fr="hi (XW—IEzb "\ Xw + 20 (1)
~ 2 ~ 2
Il + irl I2 - ir?
=k y—— | —k | ——— 2
f (yXW—ﬂfrb> (Xw+33rb> (12)
where k; and k, are constant variables which are deter-

mined by identification experiments and Xy := X+W.
The circuit equations are expressed as

~ Qilb ~
R — (I
. “1+(XW_9311>)2( 1+in) 1 )
i = — 0 + 0 er,
—— + L — 4+ L
Xw—mzb+ 0 Xw—9315+ 0
(13)
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. - B B 1T
Oc i1 tp i1 zﬂ] . The state space equation is

then obtained as follows:
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Rijp + (I1 +1i71)

1 (=) = (19)

+ Lg

Xw +a2g — lpbg
. Qieg + 1) .
Ripy + %(11 +ir1)
Xw —2g —Lbg)
v3(z) = - o) (21)
_ 4+ 1Lg
Xw —zqg — éqg
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3 MODELS AND LINEARIZ-
ABILITY

In this section, we consider the relationship between
employed models of AMB system and its linearizability.

3.1 3rd ORDER PUSH-PULL MODEL

Consider an axis of AMB system, i.e. a pair of coils,
as shown in Fig.2. For the simplicity of notation, the
suffix [ and r are dropped. The volts of upper and lower
circuits are denoted by e; and es.

2
R ~
. ei=F;t€,
coil %Ll(w) i,=I,+i|

W-z : gap

W+z @ gap
R ~
coil {c": La(z) $a=Lni l e e

2

Figure 2: An axis of AMB system (3rd order model)

Assume that the current of the circuits is controlled
as follows:

v =1 +i,is =TI — i, (23)

where I; and I are bias currents. This assumption is
actually very strong and somewhat unrealistic due to
the separate configuration of the AMB circuits. The
assumption however enables us to derive simple 3rd or-
der AMB model which is exactly linearizable.

Let the upper and lower input volts to keep the same
current i be denoted by €; and é,. The volts of the

circuits are expressed as
=E1+é1, 62=E2—é2, (24)

where Fy = RI; and Ey; = RI>. The following state
space equations then hold.

e = [z & i]" (25)
z = i | = l alz) | + l ] e (26)

alr) = &= —g+£ (;:thﬁ)Q N % (XI;/_—FZQJ)2
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2Ri + Qi { Sl t;)z + i }
Blz) = - (28)
Q
+ XW_,_I + 2Ly

b e
va) = 2 (29)
- Q
Xw—=z + XW+z + 2L0

The necessary and sufficient conditions for exact lin-
earizability are as follows:

1. ({jad(}g(:ﬂ),ad}g(az),ad;g(a:)} are linearly indepen-
ent.

Ve [ad(}g(l’),ad}g(m)] € Span{ad‘}g(m),ad}g(l’)}

The derived 3rd order model satisfies above conditions,
then that is exactly linearizable. Actually, taking the
coordinate transformation as

y = Lis(x) =, (30)
R
y» = Lip®)=[1 0 0]| a(®) | =z, (31)
| B(=)
S
ys = Lig(x)=[0 1 0]]| a(@) | =al2),
| B(=)
(32)
the state space equation can be transformed to
Y 0
| ]l 0 ] (33)
[ f3(y) J [ 93(y) J
where
fil) = Tho= oo f(a)
_Q [{ (I +1i)? (I —i)? }
M [\ (Xw—2)?  (Xw+2)
2Rz+Qa‘:{ Xflt;)g + 27 )
XW x + Xw+z + QLO
Il +1 I2 i
(T )] @
0 = LL3o=Loa() = ~og(a)
- Q Il +1 IZ —1
a M{(Xw—ﬂf) (Xw + ) }
2
i + vt + 2L (35)

Then, it is exactly linearizable with input transforma-
tion as shown in eqn.(33).
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3.2 4th ORDER PUSH-PULL MODEL

The more natural model is here employed as shown in
Fig.3. The control inputs are e for the upper AMB
circuit and —e for the lower circuit.

e = E1 + €, €y = E2 — e, (36)

where FE; and FE, are bias volts for upper and lower
AMB circuits. The currents of AMB circuits 4; and i

2

' ei=Fyte

21=I1+
—

ezx=Fze

Figure 3: An axis of AMB system (4th order model)

are
in =TI+ i1, io=1I—is. (37)

where I; and I are bias currents caused by bias volts
E; and FEs. In this case, defining state space variables

.o ~ T . .
asx =[x & 41 142 | , a state space equation is
obtained as follows:

& = f(z)+g(x)u
_ i -
L N2 N
—g+ Q. (_Ilﬁ:l_) _ Q9 (_12;12_)

2M \ Xw—= 2M \ Xw+=z
ﬁmi(11+21)
XV3*1+LO

&(Iz—ia)

Ri1+

5 Q
Rt Gy o2

%"‘LO
0
0

+| == | e (38)

Xw =
1

Q
<, 7= tLo

The necessary and sufficient conditions for the exis-
tence of coordinate transformation to realize exact lin-
earization are as follows:

(1) { adofg adlfg adzfg adeg }(m) are linearly

independent.
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2) { ad‘ofg ad}g ad}g }(a:) are involutive.

The derived 4th order model dose not satisfy the above
conditions. Then, the state space equation cannot be
exactly linearized.

The derived 4th order model however can be exactly
linearized from input to output, so-called input-output
linearization. First, define the output of the AMB sys-
tem as a new state variable. Second, define the deriva-
tive of the new state variable as a second new state
variable. Repeat the operation until the input appears.

& =a (39)
dg
i S (40)
dt
. 2 - 2
de Q I +73 Q Iy — 3
= - 7g+—(1 1)7—(2 2):53 (41)
dt 2M \ Xy — = 2M \ Xy 4«
dgg Q I1 417 i Iy +i
=2 - = @
dt M Xy —a \ Xy —z  (Xyy —2)2
Q Iy —1 i Ip — i
P T 2 + 2 7% (42)
M Xy +a \ Xy + (Xyy + )2

Q@ . -
Ky —2)2 (I3 +141)

Q+ Lo(Xy — )

. . RiI
_ Qi (I +11)? Q I +iq

M(Xy —2)3 M Xy —=

~ Q . -
- - R —_— Iy —
iy —i)? Q@ L-i "2t Gprezt2 )

M(Xy +2)3 M Xy + = Q+ Lo(Xyy + =)

+ 2114-21 1
M Xy —a Q4+ Lo(Xy — )
Iy — 7 1
22z . (43)
M Xy +2z Q+Lo(Xyw +2)

Using the input transformation

e =

- Q . -
( (Qi‘(ll +i? Q@ a4+ Tty mart i)
v e

M(Xyy —2)3 M Xy — Q+ Lo(Xyy — )

- Q P
+Qi(12—72)2 QI - Fiz + (Xyy+2)2 2z —i2)
M(Xyw +2)3 MXy +a Q+ Lo(Xwy +z)

211+¥1 1
M Xy —z Q + Lo(Xyy — )

Ip — i 1
R : (44)
M Xy +2 Q4+ Lo(Xy + )

the linearized state space equation is

dlé 010 & 0
- &Ll=10 01 S |+ 0 |v. (45)
& 0 0O & 1

There exists a state variable which is not linearized.
However, it dose not affect the output of the system.
The input-output exact linearization is now achieved.

4 MIMO INPUT-OUTPUT
LINEARIZATION

In this section, using the result of subsection 3.2, the
non-linear control system is derived for AMB rotor sys-
tem. Based on the AMB MIMO model considering
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rotor modal characteristic, an input-output exact lin-
earization is carried out. First of all, define the output
z¢ and g as new state variables & and &,. Then, also
define the derivatives as new state variables and repeat
the operation until the input of the system appears in
the output as follows:

Ta = 617 (46)

GG' = 527 (47)

b=ic = &, (48)

52 = éG = 547 (49)
G=ig=a®) = &, (50)

bi=0c=px) = G&. (51)

The transformed state space equation is then

€1 €3 0 0
22 24 0 0
a 3 _ 5 0 0 g
dt §a - &6 + 0 o [ ér ] ’ (62)
&5 f5(z) g15(z)  g25(z)
&6 fe(z) g25(z)  g26(z)
€7 = x, (53)
€g = =, (54)
where
f5(2)
2k I1 + i
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I
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2k (Ig —i79)2
_,_;#3 (EG lbgc,
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Qleg + 1p6G) -
. Ripg + ———S b9 (1) 4+7,)
L Iy +ip1 (Xw —zg — )
Q
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Xy —2g — lpog
2k (11 +3,1)?
+_—*3 (IG +1b9G
M (Xw —zq — leG
Qg +146g) -
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+2k Iy —ipa (Xw +ag +lpbg)
"
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+;—rg (IG +lb‘96
(XW i te] +’b9c;)
fe ()
~ Qég — lpég) -
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I B I +in B Xw —2g +1h6g)
AN t196)° < +z
w — g t g e ——— 0
Xw —zg +Lba
I, +i59)2 )
SV Wk D S (iG - zbec)
(Xw —eg + leG)
- Qeg — Ipfg) ~
- Rijg + = < 5 (T2 = 412)
o 12 — 42 _ Xw +26 —hbg)
2 Q
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Xy +2g + 16
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g15(x) = I3 5 e}
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Xw —a2g +hhbg
2k Iy — 7 1
+— 212 , (55)
M 2 Q
Xw +zg — lpba - + Lo
Xw +zg —hhbg
2k I1 +ip 1
925(z) = I 5 e}
(XW -z —zbsG) [
Xw —zg — hbq
2k Ip — 1 1
+ = z 5 . (56)
M (Xw+w(,'+lb9(;) — + Lg
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1 Iy +ip 1
g16(z) = 5 —2k 3 o)
Xy —2g + 1,0 ) - 4L
w c théc 0
( Xw —zg +Lba
Ip — 7 1
~ ok 2 2 5 5 1. (57)
Xw +zg *159(;) —_— + Lg
( Xy +2g — lhég
1 I+ ip1 1
g26(z) = 5 2k = 3 2
(xw o~ nea) o s+ o
w =g~ Lfg
Tg —ipg 1
+ 2k 5 > 1. (58)
(XW+IG+lb9G) —+ Lo

Xw tezg +hba
The input transformation for input-output exact lin-

earization which preserve the dynamical characteristics
at the equilibrium point is

[ & ] - [ g15(z)  g25(=) ]_1 [[ a1l aip a13 a14 ais 216 ]
ér 925(2)  926(2) ag] agp a3 ag4 ass age

€1
€2
v ()
g+l lln]-[40]
25
6
(59)
where
4k 1,2+ L2 R
= = 60
ai M (Xw) Lo (60)
a2 = 0 (61)
2 2 T T
b = _2kD +I§ <Q(1+ 2 _, (62)
M (Xw) (Xw) Le
as = 0 (63)
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. T (xw)® \ &w)Lo (69)
azs = 0 (70) sol-
R H
aze = _E (71)
b 2k 12+ 1% 1 (72)
v Ay
M (Xw)* Lec Figure 4: PID controller
2% L4171
b = i (XW)2 Io (73)
2kl, 12+ 1,2 1
b = - 4 80}
21 J (XW)2 LC (7 ) il
2kl 112 + I,% 1
b b h 4 D (75)

J  (Xw)® Lc’

5 EXPERIMENTAL RESULT-
S

In this section, the results of rotor levitation experi-
ments with input-output exact linearization technique
are shown. The physical parameters of the experimen-
tal rig are M: 13[kg], J: 0.07[kg-m?], g: 9.81[m/s?], R:
0.81[Q, Xo: 0, I1;: 3.50[A], Is: 1.99[A], I1,: 3.50[A],
I 2.29[A], k2 7.98 x 1075, k,: 9.47 x 107°, X:
2.77x1073[m], W: 4.5 x 10~ 4[m], Q: 1.62 x 10~ 5[m-H]
and Lg: 8.55 x 10~ 4[H]. The linear part of the control
system is PID controller whose parameters are P: 7400,
I: 100, and D: 50.

Fig.4 shows the experimental result of PID controller.
Fig.5 shows the result of PID controller with non-linear
controller for input-output exact linearization. The ref-
erence gap goes down step by step in the experiments.
In Fig.4, since the performance of PID controller is
poor, the response of the control system begins to os-
cillate after the first step reference input. On the other
hand, the control system using nonlinear controller for
input-output exact linearization does not however os-
cillate. By these experimental results, the effectiveness
of the input-output exact linearization to enlarge the
stability region is confirmed.

6 CONCLUSION

In this paper, a control system design method for AMB
system was proposed. The design method is based on
the natural model of the push-pull type AMB system
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Gap(%)
3

Figure 5: PID controller with input-output exact lin-
earization

considering rotor modal characteristics. Using input-
output exact linearization technique, nonlinear control
system was designed. In the case of poor linear con-
troller, it was confirmed that nonlinear controller sup-
ported the linear controller and tremendously improved
the control system performance.
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