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ABSTRACT
A new method for the reduction of either the vibration
or AMB current induced by rotor imbalance is
presented. The approach is based on previous research
on Adaptive Vibration Control for active magnetic
bearing systems. To minimize the memory and
computational requirements imposed on the hardware,
the gain matrix used is synthesized as functionally
dependent upon the operating speed with only the
diagonal elements varying linearly with speed. The
resulting algorithm was experimentally tested on a
high-speed spindle. Significant reductions in bearing
currents were achieved over a wide range of operating
speeds.

INTRODUCTION

For many proposed applications of magnetic bearings
(AMB), system costs are critical to marketability. Of
the system components, the power electronics’ costs
are becoming increasingly dominant since progress has
been slower in the integration of power electronics than
in the signal electronics. One effective mean to reduce
the costs of the power electronics is to minimize the
AMB’s power consumption and the reactive power
required.  If a rotor is perfectly symmetrical, the axis of
inertia and the geometric axis are identical. In this case,
the rotor turns around its geometric axis and the
measured vibration is zero (the shaft orbit is a single
point). Of course, actual rotors are never perfectly
symmetrical and this results in the geometric and
inertial axes being not coincident.   In this case, the
shaft will orbit when rotating. The feedback controller
acts to oppose this vibration, resulting in a significant
synchronous component to the control current.
Typically, this imbalance-induced synchronous
component is the dominant part of the

AMB control current. To minimize the AMB power
consumption and reactive power required, this
synchronous component needs to be greatly reduced.
Two different but related methods may be used to
accomplish this:
1) a synchronous notch filter in the feedback

controller
2) feedforward cancellation
Tracking notch filters [2] may be inserted directly into
the closed loop. However they have the disadvantage
that it is difficult to design them to operate over a wide
range or near bending criticals.  The idea of
feedforward control is to add compensation signals to
the closed loop system. The feedback controller can be
developed without considering this feedforward
algorithm. It should be pointed out that adaptive
feedforward strategies are closely related to
generalized notchfilters [2]. However the synthesis
techniques for adaptive feedforward control are
significantly more straightforward.

THEORY OF GAIN-SCHEDULED ADAPTIVE VIBRATION
CONTROL

The feedforward technique used herein, known as
Adaptive Vibration Control (AVC), was developed by
the second author and has been extensively studied
([3]-[7] and references therein). The basic principle is
illustrated in Figure 1.

Figure 1. Structure of the control loop
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The following quasi-static model of the rotor’s

synchronous response is the basis for adapting the

feedforward signals,

x Tu x= +
0 (1)

where x represents the 2 1n ×  real vector of

synchronous Fourier coefficients of the n performance

signals, u the 2 1m ×  vector of synchronous Fourier

coefficients of m feedforward signals applied to the

magnetic bearing, T is the 2 2n m×  real-valued transfer

matrix of the feedforward signals to the performance

signals and x0 is the 2 1n ×  real vector of synchronous

Fourier coefficients of the performance signals, when

no feedforward signals are applied. The factor 2 in the

vector size arises from the conversion of each complex

Fourier coefficients to two real numbers. In the above

discussion, a performance signal is a signal of which

we wish to reduce the synchronous component. The

feedforward signal may be added to either the feedback

controller’s output or the rotor’s position measurement

signals.  In the case presented here, the AVC input is

inserted before the position controller and seeks to

minimize the synchronous component of the input

signals delivered to the feedback controller. Because

the timebase for calculating the schedule for future

compensation signals is much longer than a feedback

controller cycle, this method can be considered as an

open loop control. Thus the AVC does not affect the

system stability and the position controller can be

designed with the AVC neglected.

J = x x* (2)

The AVC seeks to minimize the quadratic performance

function (2). Substitution of (1) into (2) and taking the

first derivative with respect to the control vector u
yields:

dJ

du
u T T x T0= +* *

(3)

The optimal control vector can be determined by

setting (3) equal to zero and solving it for u. This

results in the global control law:

u T T T x0= − −
( )

* *1
(4)

Note that this depends on the uncontrolled performance

signal being set to zero, which is undesirable. An

alternative to this control law is to use a recursive

formulation.  For this we introduce the subscript i for

the Fourier coefficients determined from several (10 to

20) recent rotor revolutions. By taking the difference

between xi and xi+1 the uncontrolled vibration x0 can be

eliminated from the quasi-static model:

x x T u ui i i i+ +− = −
1 1

( ) (5)

Now once again the optimal control vector can be

eliminated by minimizing the performance signal

yielding the local control law:

u u Axi 1 i+ = +i (6)

with the optimal adaptation gain matrix:

A T T T= − −
( )

* *1
(7)

Note that the matrix T is a function of operating speed

and hence the gain matrix A will also be so. We shall

denote the matrix T for operating speed ωk by Tk.

Furthermore, Ak will indicate the gain matrix used at

speed ωk. The matrix Ak need not be chosen to be

− −
( )

* *T T Tk k k

1
for the algorithm to be effective. For

example, in the typical case where m = n (number of

performance signals equal to the number of

feedforward control signals) the local control law will

completely eliminate the synchronous component with

any gain matrix A as long as the adaptation is stable

(see below). In this case, the optimal matrix is given by

A Topt = − −1
(8)

For the remainder of this paper, we will restrict our

development to the case where m = n as it is in our

application.  The transfer matrices Tk may be

determined either through a system model or through

experimental identification. The result of both methods

is a set of transfer matrices. We will assume throughout

this paper that this set of matrices is a representative of

all the matrices for a speed range. It is relatively easy

to collect enough transfer matrices with suitably spaced

frequencies such that the set satisfies this assumption.

Reducing the number of adaptation gain matrices
Using equations (5) and (6), it is easy to derive the

following simple sufficient condition for adaptation

stability [6]:

σ ( )I A T+ <k k 1 (9)

where σ (...) denotes the maximum singular value.

An obvious method for implementing the AVC control

is to calculate A Tk k= − −1
 and store these values in a

look-up table with some interpolation of these gain

matrices for speeds between the ωk’s. This method has

been widely implemented and yields quick elimination

of the synchronous components, as the optimal gain

matrix for each speed is used. A disadvantage of this

approach is the large memory space which is necessary



for storing the Ak’s, especially for rotors operating over

a wide speed range. This increases the cost of the

signal electronics.

A number of strategies have been advocated for

reducing the number of matrices required [7] including:

1) synthesizing a single gain matrix A which satisfies

(9) for all frequencies in the speed range

2) synthesizing a gain matrix which is functionally

dependent on operating speed (implicit gain

scheduling)

A single matrix has the advantage that minimal

memory is necessary and no additional computation

associated with speed dependence is needed. In this

case the matrix A has to satisfy the following

inequality:

σ γ( )I AT+ < <k 1 (10)

for each speed ωk.. Here, γ is the inverse of the

adaptation convergence rate. Using Schur complement,

each of these conditions can be transformed to a linear

matrix inequality (LMI). This is a convex feasability

problem and may be easily solved using available

software.

γ
γ

I I AT

I AT I
k

k

+
+









 >

( )
*

0 (11)

If the Tk’s vary strongly from each other a single gain

matrix A that satisfies (11) for all k  = 1, …, N
covering the operating speed range may not exist.

Indeed, this is the case for the experimental rotor

discussed in the next section.

To synthesize a gain matrix that is functionally

dependent on operating speed, a finite basis must be

chosen for the function. For on-line computational

simplicity, the affine matrix function

A A A1k k= +
0

ω (12)

is chosen here. The task of gain matrix function

synthesis then is to determine A0 and A1 so that (9)

holds for all ωk. To further simplify the real

computation for the adaptation presented here, the

matrix A1 was chosen to have the form

A I
1 1

= a (13)

after it was noted from experimental data that the

diagonal elements of Tk were undergoing the greatest

variation with speed for the test rig considered. This

reduces the number of operations to calculate ui+1 as

Table 1and Table 2 show:

Table 1: Number of operations to calculate uk+1 with

any A1

uk+1 = (A0 + ωk ⋅Ak ⋅ xk +uk Total

Additions: 4n2
4n2

-2n 2n 8n2

Multiplications: 4n2
4n2

8n2

Table 2:. Number of operations to calculate uk+1 with

A1=a1I

uk+1 = A0⋅ xk + ωk ⋅a1I ⋅ xk +uk

Additions: 4n2
-

2n
2n 2n

Multiplications 4n2
1 2n

This choice also reduces the memory required by

almost 50%. In this case, the condition (9) can be

stated as:

γ ω
ω γ
I I A I T

I A I T I
0 k

0

+ +
+ +
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(14)

The synthesis task is then to determine A0 and a1 such

that condition (14) is satisfied for all ωk. Since the

constraint for each ωk is convex, the synthesis problem

is a convex feasibility problem. Furthermore, if we

chose to minimize γ (i.e. maximize convergence rate)

this synthesis is a generalized eigenvalue problem

(GEVP) [1] and is a convex optimization problem. This

can be solved using the LMI toolbox of MATLAB.

TEST RIG AND ELECTRONICS USED

To examine these current minimizing strategies, they

were tested on a high-speed AMB spindle (Fig. 2)

designed for a maximum speed of 120’000rpm (2kHz).

Because the motor control is still under development,

operation above 90’000rpm (1.5kHz) is not possible at

this time.

The rotor has a length of 180mm and an average

diameter of approximately 30mm. It has its first free-

free bending mode at 1650Hz and is not very

gyroscopic. The rotor consists of two radial bearing

journals, an axial bearing disk and a permanent magnet

motor rotor that is held in place with carbon fibres. The

total weight of the rotor is 680g.

The position of the rotor is measured in each of the five

bearing axes by eddy-current sensors. At one end of the

rotor a diametrically magnetized permanent magnet is

mounted. Hall sensors measure its field in x- and y-

axes, which gives a speed-synchronous sine and a

cosine signal locked to the shaft rotation. These signals

are directly used by the AVC algorithm for

convolution. This hardware solution relieves the signal

processor from having to generate these signals.

This digital signal processor, a TMS320C50 of Texas

Instruments, constitutes the heart of the signal

electronics. It is a 16-bit fixed point processor with a

clock rate of 80MHz. The signal electronics has 7



Figure 2. High-speed spindle

analog inputs: 5 for the eddy current sensor signals and
2 for the Hall sensor signals.
The power electronics consists of 5 H-bridges. Each of
them delivers a maximum output current of 2.5A at
48V with a PWM-frequency of 62.5kHz.
The feedback control algorithm used is of conventional
PID type with the D-term produced by lead-lag
elements.

IMPLEMENTATION

The control algorithms (feedback and AVC) are
implemented on the TMS320C50 a 16-bit fixed point
processor. The programming was done in Assembler to
eliminate the unnecessary overhead often produced by
compilers so as to achieve fast execution.
Unfortunately, using a fixed point processor means
scaling internal variables, and a great deal more
programming effort is required, for example for a
division operation.

Adaptive Vibration Control
The entire adaptation process is transacted in the
Fourier domain. Therefore, the first element of AVC
(see 4) is a convolution of the four performance signals
with a sine and a cosine of the same frequency as the
rotating speed, here produced by the hall sensor. This
convolution results in an 8 1×  vector of Fourier
coefficients of the sensor signals (since there are four
radial vibration measurements). This vector is sampled
with a much lower frequency than that used for the
discrete time convolution.
The actual adaptation process consists of a matrix
multiplication and a discrete-time integration (see
equation (6) and Fig. 3). First A(ω) must be calculated
from (12). This consists of 1 multiplication and 8
additions. The Fourier vector of the sensor signals is
then multiplied by this 8 8×  matrix. This step consists
of 64 additions and 64 multiplications. Although the
DSP executes one addition and one multiplication in a
single clock cycle, this step is still quite time-
consuming. The vector after the discrete-time
integration then are the Fourier coefficients of the

compensation signals. It is important to point out that
the phase between the reference signals and the shaft
angle is not important. Therefore the sine and the
cosine could also be derived from the motor control.
The only condition is that they have the same
frequency as the rotation speed and the phase
difference between them remains constant for a given
speed.

Figure 3: Structure of AVC
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Figure 4: Flow diagram of AVC



Timing
The feedback control update rate of 10.4 kHz (see Fig.

4) is derived from an interrupt signal activated by the

power electronics every PWM cycle (62.5kHz). In

addition to the collection of the sensor data and the

execution of the feedback control algorithm, the

convolution of the performance signals is calculated. In

the same cycle the Fourier coefficients of the

compensation signals are transformed into time

domain.

The adaptation procedure is controlled via a counter. In

the actual implementation the control frequency is

divided by 240 which gives an update rate for the AVC

of 40Hz. In this cycle the gain matrix A(ω) is derived

from rotating speed. Based on this actual gain matrix

the Fourier coefficients are updated.

Collection of the transfer matrices
To synthesize the adaptive gain matrix function, the

transfer matrix T is required over the operating speed

range. For this experiment these matrices were

measured directly from AMB-supported rotor using a

special identification algorithm with a structure similar

to that of the AVC (compare Fig. 5 with Fig. 3).

Figure 5: Modifications for estimating T

This algorithm sends a set of 2n feedforward test

Fourier vectors to the system with the rotor levitated.

In order to simplify the required calculations, these test

vectors are chosen to be the 2n columns of a

2 2n n× identity matrix. These vectors are multiplied

by the speed-synchronous reference sine and cosine

signals to generate a series of excitation signals in

exactly the same manner as AVC does. The

convolution of the position sensor signals with the

reference signals produces 2n performance Fourier

vectors in response to the excitation. It is obvious that

these vectors are the column vectors of the desired

transfer matrix. To mitigate the effects of noise the test

vectors are applied during a longer period. Empirically

good results are obtained if one computes the Fourier

vectors over 20 cycles. This T matrix identification

may be done during operation at each speed ωk of

interest, so that any gyroscopic effects are taken into

account. To be independent of the actual unbalance, the

response of the system without excitation must also be

measured at each speed with the resulting vector

subtracted from each column vector of the obtained

response matrix to yield Tk.

Since the rotor examined here is not very gyroscopic,

the estimation of Tk was made without the rotor

turning. External reference sine and cosine were used

in place of the Hall sensor signals.

RESULTS

Forty transfer matrices were measured from 10Hz to

2kHz. They were downloaded into MATLAB. The

GEVP optimization was carried out on three separate

speed ranges: 50-300Hz, 300-600Hz and 600-2000Hz.

A linear matrix function (A0 and a1) was found for each

of these speed ranges, allowing stable adaptation

between 50Hz and 2kHz.

Fig. 6 shows the measured synchronous current at the

output of the position controller during run up with

AVC turned off and on. At speeds below 30Hz the

AVC is turned off, since the resolution of speed

determination is only 10Hz. Since the two rigid body

modes, which lie below 400Hz, have low damping, the

AVC is very effective in this frequency range. Because

of the good quality of the rotor balance the reduction in

current used above 400Hz is not as significant as that

below. Between 1300Hz and 1800Hz the adaptation

was frozen, since synchronous current minimization

cannot be performed at a bending mode natural

frequency as the vibration will grow until loss of

levitation occurs.  Note that this is not adaptation

instability since the currents would be, in fact

minimized if they were not frozen. Thus, the Fourier

coefficients of the compensation signals in this speed

range are not updated and are the same as those used at

a speed of 1300Hz. Therefore, the current rises as the

rotating speed moves towards the bending critical.

However, it is still significantly less with AVC than

without.
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Figure 6: Synchronous currents during run up (upper

bearing)
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Figure 7: Bearing current during run up (upper
bearing)

Fig. 7 shows the peak-to-peak bearing current which is
not as low as the synchronous current. The difference
between synchronous current, arises from a 0.2A
current ripple, produced by the switched amplifier. The
maximum peak-to-peak current employed is reduced
by 90% with AVC.
Fig. 8 shows the measured displacement during run up
with and without AVC. Note that the rotor turns around
its axis of inertia with AVC turned on. Therefore the
position is minimized since the rotor is mechanically
well balanced. Thus, the 90% reduction in current used
is also accompanied by a significant reduction in rotor
vibration.

0

10

20

30

40

50

60

70

80

0 500 1000 1500

Rotation Speed [Hz]

D
is

p
la

ce
m

en
t 

[ µµ
m

 p
ea

k-
p

ea
k]

without AVC
with AVC

Figure 8: Unfiltered peak-to-peak displacement during
run up (upper bearing)

CONCLUSIONS

In this paper a new form of the Adaptive Vibration
Control algorithm is examined. To minimize the
requirements on the signal electronics, this algorithm
employs an adaptation gain matrix which is
functionally dependent on operating speed rather than
using a look-up table. This gain matrix function was
synthesized using experimentally determined transfer
matrices obtained at zero rotation speed. A shaft-
mounted permanent magnet and two Hall sensors were
also used to generate synchronous signals for
convolution, significantly lowering the computational
burden placed on the signal electronics. The
experimental data clearly demonstrates that very high
operating speeds can be reached for such AMB
systems without the use of large coil currents.
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