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ABSTRACT 
In this paper, a method is presented for the derivation of 
tuneable multivariable controllers for application to a 
magnetic bearing/rotor system. Controller design 
specifications are considered that use H∞ optimisation 
criteria with linear parameter dependent shaping 
functions. Linear matrix inequality (LMI) techniques 
are used to synthesise controllers that satisfy the H∞ 
design specification over the range of parameter values 
using a convex interpolation of vertex controllers. In 
this way the design parameters that determine the 
shaping functions can be adjusted on-line to tune the 
performance and robustness characteristics of the 
controller. Specific performance measures that are 
considered are those of rotor synchronous vibration 
levels, transmitted force levels, base motion rejection, as 
well as controller stability margins. The effectiveness of 
such an approach for the synthesis of tuneable H∞ 
controllers for a rotor/magnetic bearing system is 
evaluated. 

1. INTRODUCTION 
Tuneable controllers compare favourably with fixed 
controllers that are selected on the basis of their 
predicted performance, which may be poor in practice 
due to modelling inaccuracies. In the case of 
rotor/magnetic bearing systems, such inaccuracies may 
arise in a theoretical model of the system due to 
discretisation and lumped parameter approximations. It 
is therefore advantageous to be able to fine-tune a 
controller on-line to improve performance in the 
presence of such uncertainties. A simple example would 
be the tuning of proportional and derivative feedback in 
PID control to give an acceptable combination of 
bearing stiffness and modal damping in the closed loop 
system. In addition, robustness problems, such as 
instability of unmodelled rotor flexural modes can be 
avoided if controller gains can be tuned on-line. 

Incorporating tuneable parameter dependence is 
straightforward for low order controllers, which are only 
dependent on a small number of parameters. However, 
the formulation of high order parameter dependent 
optimal controllers presents a more difficult problem 
that will be the focus of the paper. 

As well as allowing the fine-tuning of performance, a 
parameter dependent controller allows the control law to 
be varied according to the state of operation. For 
example, the dynamics of the plant may be dependent 
on a number of time varying parameters. Therefore an 
appropriate control law that is also dependent on these 
parameters will enable good performance to be achieved 
over the entire range of operating conditions. When the 
plant parameters are measured or estimated in real time 
and used to automatically adjust the control law this is 
termed gain scheduling. An obvious application of gain 
scheduling in rotor/magnetic bearing systems is the use 
of a controller that is a function of the rotational speed. 
Mason et al. [1] exploited the linear dependency on 
rotational speed from gyroscopic influences of a flexible 
rotor system matrix to derive a gain scheduled H∞ 
controller that guaranteed a prescribed level of 
performance over a wide running speed range. Sivrioglu 
and Nonami [2] have also considered this technique and 
compared it with scheduled sliding mode control for a 
turbomolecular pump having a single active magnetic 
bearing. In these cases, a plant with dynamics that are 
dependent on time varying parameters was controlled 
using an algorithm that was also dependent on those 
parameters. However, an extension of this concept that 
has not been widely considered is the use of parameter 
dependent controllers where the parameters can be used 
to select the required performance and/or robustness of 
the closed loop system on-line. The plant itself need not 
be time varying. Such high order optimal controllers 
that are functionally dependent on a number of  'tuning' 
parameters are considered in this study. 
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2. CONTROL OF LINEAR PARAMETER 
DEPENDENT SYSTEMS 

Control synthesis techniques for linear parameter 
dependent systems have been developed [3] based on a 
LMI formulation. Their main application has been to the 
design of gain-scheduled H∞ controllers for plants 
whose dynamics can be approximated by affine 
parameter dependent models. Provided these time 
varying parameters can be estimated or measured on-
line, then the appropriate gain scheduled controller will 
ensure the H∞ performance criterion is satisfied over the 
entire range of considered parameter variations. Such 
synthesis techniques are applicable to plants that can be 
modelled with the state space equations: 
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where the vectors y and u are the control outputs and 
inputs, z and w are the error outputs and disturbance 
inputs respectively, and x contain the dynamic states. 
The indicated state space matrices are affine functions 
of the vector of time varying parameters p(t), each 
element having defined lower and upper 

bounds ( ) ( )tptp ii
 and  : 

 ( ) ( ) ( )[ ] ( ) ( ) ( )tptptptptpt iiin ≤≤=        , ,...,1p      (2) 

All parameter values will therefore be contained within 
an n dimensional box having vertices P1…N. Defining 
the overall plant system matrix S as  
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then S(p) can be formulated as a summation over the 
vertex system matrices S(Pj): 

( ) ( ) ( )NN SSS PPp αα ++= ...11   (4) 

where the coefficients αi can be calculated from a linear 
decomposition of p(t): 
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If the parameter dependent controller Sc is formulated in 
the same way, as an interpolation of vertex controllers: 

( ) ( ) ( )NcNcc SSS PPp αα ++= ...11   (6) 

where 
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then the closed loop system matrix can be constructed 
as a summation over the vertex closed loop system 
matrices. 

Existence conditions for the controller satisfying a 
closed loop H∞ specification (||T||∞<γ) require that two 
symmetric matrices X and Y can be found such that [4]: 
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for all j, where the index j denotes the system matrices 
for each of the vertex parameter values. Matrices L  and 
M  are bases of the null spaces of [B2

T D12
T] and [C2 D21] 

respectively. 

If a common solution (X and Y) can be found for all the 
vertex system matrix values then an arbitrary system 
matrix formed from a linear interpolation of the vertex 
system matrices (equations (3) and (4)) will also satisfy 
these inequalities and hence a parameter scheduled 
controller of the form given in equation (6) can be 
constructed [3]. 

3. GENERALISED LOOP SHAPING 

The usefulness of the H∞ controller design method is 
enhanced when shaping (or weighting) filters are 
included in the plant formulation. These allow the 
closed loop frequency response of the system to be 
influenced through appropriate choice of shaping filters. 
Shaping filters are often chosen as diagonal transfer 
function matrices that act on the plant inputs and 
outputs. The most general case is shown in figure 1 and 
corresponds to the weighted open loop plant given in 
the Laplace transform domain as 
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A closed loop controller K that satisfies an H∞ (peak 
gain) specification for the weighted plant can then be 
modified through combination with the shaping filters 
to give a controller WyKWu, that stabilises the 
unweighted plant. The closed loop response then 
satisfies 

( ) γ≤
∞wz WKGTW ,      (10) 

The inclusion of shaping filters at the control inputs and 
outputs (Wu, Wy) can be used to ensure the controller has 
desired characteristics, such as integral action, or poles 
or zeros at specified locations. 

The inequality equation (10) is equivalent to 

( )( ) ( )( ) ( )( )    γωσωσωσ ≤jWjTjW wz  (11) 
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Figure 1  Closed loop system with shaping filters 
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Figure 2  Vertex shaping filters (- - -) and linear 

interpolation (____) 
 

The shaping filters (Ww, Wz) can therefore be chosen to 
place a frequency dependent bound on the maximum 
gain of the closed loop system frequency response. In 
most design problems, inclusion of Wz alone is 
sufficient to give the required level of design influence. 

4. LINEAR PARAMETER DEPENDENT 
SHAPING FUNCTIONS 

The state space matrices for a shaping filter, if suitably 
chosen, can be given a linear dependence on certain 
characteristic parameters that are important in their 
application to loop shaping. Namely, the location of the 
poles and zeros and the overall gain, which are directly 
related to the shape of the filter. This is most easily 
demonstrated by considering the first order transfer 
function 
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having a pole at s = b, a zero at s = a and a gain factor k. 
Consider the state space representation of this system 
given by 
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It can be seen that with this representation the system 
matrices have an affine dependence on the specified 
parameters. Hence, the system matrix for a filter with 

arbitrary but bounded parameter values can be formed 
from a linear interpolation of vertex system matrices 
having the maximum and minimum parameter values. 
This is important as it allows the parameter dependent 
shaping filters to be specified within the type of control 
problem considered in section 2, for a linear parameter 
dependent plant. An affine dependence of the state 
space matrices on the poles and zeros can also be 
achieved for a second order transfer function with 
complex poles or zeros by using a real modal 
representation. 

As an example, consider a second order transfer 
function with poles at njs ω±= . If two such transfer 

functions with natural frequencies ω1 and ω2 are taken 
as vertex systems then the system matrices for a filter 
having a natural frequency ωn where ω1 < ωn < ω2 can 
be formed from a linear interpolation of the 
corresponding vertex system matrices. This is illustrated 
in figure 2, which shows such a parameter dependent 
filter, the type of which will be used in subsequent 
controller design. The filter with natural frequency ωn is 
constructed from the overall system matrix of two 
vertex filters with natural frequencies ω1 =1000 and ω2 
= 3000 rad/s: 
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Higher order filters can be constructed by connecting 
such first and second order filters in series, without 
losing the linear dependence of the system matrices on 
the pole and zero locations.  

5. SYSTEM DESCRIPTION 
The system model considered in this study is based on a 
turbomolecular pump having five control axes (although 
only transverse rotor motion and control will be 
considered). The magnetic bearings are of standard 
design with position feedback control being applied. 
The radial displacement of the rotor is measured, 
relative to the stator in two planes. External disturbance 
sources are present that can cause vibration of the 
system base, but also a direct forcing disturbance acts 
on the rotor, for example, due to unbalance forces. The 
running speed range of the rotor is 0-3000 rad/s. A 
schematic diagram is shown in figure 3. 

The state space description of the system dynamics has 
the form 

( )
by

u
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   (15) 

where x is the vector of rotor states (translatory and 
rotational displacements and velocities), u the vector of 
forces applied by the bearings, f the vector of direct 
forces acting on the rotor, yb the vector of base 
displacements at the sensor locations and y the 
measured rotor displacement (relative to the base). The 
system matrices are derived from the rigid body 
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dynamics of the spinning rotor and therefore the A 
matrix has a linear dependence on rotational frequency 
Ω through gyroscopic effects. 

For magnetic bearings operating in an opposing pole 
pair configuration, with constant bias currents and 
differential driving mode, the linearised bearing force 
can be written as 

mzc K yuu +=    (16) 

where u is the bearing control force due to the control 
current and Kz is the negative stiffness of the bearing. If 
the rotor displacement at the bearings ym is measured, 
then proportional feedback can be applied to give zero 
bearing stiffness. The transmitted force u is then equal 
to any additional control feedback applied and the base 
motion input is equivalent to a position demand signal.  

For control synthesis, the system must be arranged to 
have the form of the open loop system given by 
equation (1). The exact constitution of the signals w and 
z will depend on the control problem being considered. 
In practice, z can be constructed from any combination 
of disturbance and reference signals acting on the 
system and w constructed from any combination of 
input signals and system states. 

6. TUNEABLE CONTROLLER DESIGN 
The concepts and methods explained in the previous 
sections can now be combined for the purpose of 
deriving controllers for which the dependent parameters 
can be used as tuning variables. There are many 
possibilities, with regard to the choice of shaping filters 
and tuning parameters. However, the general purpose of 
the control synthesis will be to obtain a number of 
vertex controllers that differ in a number of important 
indices, for example performance (in one or more 
sense), controller gain and/or robustness. From these 
vertex controllers, a parameter dependent controller 
(equation (6)) can be implemented that allows these 
properties to be smoothly varied on-line through an 
interpolation of the controller state space matrices. 

It is beyond the scope of this study to investigate all the 
possibilities for such a design method, or to investigate 
rigorously the mathematical feasibility for any particular 
design formulation. Therefore, a number of examples 
will be chosen for demonstration and the potential for 
useful ‘tuneability’ resulting from the designs will be 
investigated. 

Design 1. Synchronous tracking vibration control 
In some applications it is desirable that the orbit 
amplitude of the rotor due to unbalance excitation is 
minimised. Controller designs that have been proposed 
to achieve this include those using notch filters [5]. 
Alternatively, Matsumura et al. [6] used boundary 
constraints in an H∞ loop-shaping procedure to derive a 
controller having infinite gain at the appropriate running 
speed frequency. For the H∞ design method used here, 
the plant is formulated with disturbance inputs w = yb, 

and error outputs z = [y, y+yb]. Vertex plants are 
selected, corresponding to two different rotational 
frequencies Ω1,2. A second order shaping filter Wy acts 
on the output y, having poles close to the imaginary axis 
with natural frequencies equal to the two rotational 
frequencies (ω1,2 = Ω1,2). Solving the LMI problem 
(equation (8)) for the two vertex system matrices gives a 
parameter dependent solution for all rotational 
frequencies between the two vertex values. In effect the 
poles of the shaping filter, rather than being fixed, can 
track the disturbance frequency by being shifted up and 
down the imaginary axis of the complex plane via the 
linear parameter dependency demonstrated in section 4. 
This allows synchronous vibration to be minimised over 
a wide running speed range, or alternatively to be fine-
tuned when running speed is fixed. An advantage of the 
method used here is that the running speed dependence 
of the plant A matrix can also be incorporated in the 
formulation and thereby give added guarantees of 
performance and stability over the running speed range 
considered. 
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Figure 3  Schematic diagram of experimental system 
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Figure 4  Performance and robustness of the vertex 
systems for design 1: Maximum singular values of 

(a) sensitivity function (b) inverse sensitivity function 
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The sensitivity function (I+GyuK)-1 and inverse 
sensitivity function GyuK(I+GyuK)-1 for the two vertex 
system are shown in figure 4. Vertex shaping filters 
have been chosen having lightly damped poles with 
natural frequencies at 100 and 3000 rad/s and it can be 
seen that the vertex system sensitivity functions are 
minimised at these frequencies. A controller formed 
from a linear superposition of the two vertex controller 
matrices allows the sensitivity function to be minimised 
at synchronous frequencies within the interval 100-3000 
rad/s (figure 5).  

 

Design 2. Tuneable sensitivity/robustness  
Loop shaping techniques allow a trade-off between 
achieving performance and robustness through 
minimisation of the sensitivity and inverse sensitivity 
functions over differing frequency bands. In 
rotor/magnetic bearing systems the desire is often to 
have a reduced sensitivity at low frequencies. For 
example, a small response to low frequency base motion 
disturbances is useful. At higher frequencies a low 
inverse sensitivity function is required for robustness to 
modelling errors or plant uncertainty, for example due 
to unconsidered flexural modes. A low inverse 
sensitivity function can also improve plant input 
disturbance rejection i.e. direct rotor forcing response. 
Often, the desired crossover frequency between 
achieving performance and robustness is uncertain, and 
the required level of robustness to plant uncertainties 
unknown. It is therefore advantageous to allow some 
tuning of these factors in the implementation of the 
controller and not just during the controller design 
stage. 

In order to achieve this, consider the system having 
disturbance input w = yb, and error outputs outputs z = 
[y, u]. A parameter dependent shaping filter Wc acts on 
the bearing force (u) components of the output z. The 
two vertex filters are shown in figure 6, together with an 
intermediate filter formed from a linear interpolation. 
Solving the H∞ control problem for the vertex systems 
gives the closed loop transfer functions shown in figure 
7. It can be seen that these two closed loop systems have 
differing levels of performance and robustness. The two 
vertex controllers can therefore be used to form a 
tuneable controller, the tuning parameter of which can 
be used to select on-line the level of 
performance/robustness. It is envisaged that a number of 
tests would be performed on the system to deduce 
optimal selection of the tuning parameter. For example, 
the controller robustness could be reduced until high 
order flexural modes become destabilised, the 
robustness would then be increased slightly. 
Alternatively, tuning could be performed to optimise the 
trade-off between tracking performance and noise 
attenuation.  
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Figure 6  Vertex shaping filters for design 2 Wc (- - -) 
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Figure 7  Performance and robustness of vertex 

systems for design 2: Maximum singular values of  
(a) sensitivity function (b) inverse sensitivity function 
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Figure 8  Maximum RMS gain of the vertex systems  

for design 3 from rotor direct forcing input to (a) 
rotor displacements (b) bearing force 

 

Design 3. Tuneable vibration transmission 
In some applications it is desirable to have no control 
action at the running speed frequency. If this is achieved 
then the rotor will spin around its inertial axis. If the 
rotor unbalance is sufficiently small to give acceptable 
orbit sizes, then this technique has the advantage that 
orbit sizes are independent of running speed and also 
that bearing-rotor interaction forces are minimised. This 
has previously been achieved through the use of notch 
filters in series with low order controllers, with 
associated robustness problems in respect of 
destabilisation of rotor flexural modes. However, the 
technique developed here allows the use of notch filters 
in series with higher order robust controllers. 

The formulation for this problem uses a filter at the 
plant control input Wu having transmission zeros at the 
vertex synchronous frequencies. As in design 1, the 
transmission zeros can track the running speed 
frequency through the linear parameter dependency. 
Additionally, the running speed dependency can be 
incorporated in the plant system matrix. The maximum 
RMS response of the closed loop vertex systems to 
direct rotor forcing is shown in figure 8, together with 
the resulting bearing force magnitude. 

7. CONCLUSIONS 
In this paper a method has been proposed for deriving 
tuneable controllers. The examples used in this study, 
incorporated tuneability into the controller in order to 
achieve two differing types of objective. One type 
(designs 1 and 3) used parameter dependent weighting 
functions to give selected closed loop transfer functions 
that are minimised at the synchronous frequency. The 
linear parameter dependency of the plant and controller 
was exploited in order that this minimal frequency could 
track the rotational frequency of the rotor over a 

significant range. Although, these controllers could be 
viewed as tuneable, they could also be implemented as a 
self-scheduled controller if running speed is measured 
and used to automatically select the controller tuning 
parameter. The other type described, used a linear 
parameter dependent robustness-shaping filter to derive 
an optimal controller for which the performance and 
robustness levels could be tuned on-line through 
adjustment of a single parameter.  

These studies suggest there is further scope for the use 
of controllers derived for linear parameter dependent 
systems, where the parameters are not treated as 
scheduling parameters (as conventionally has been the 
case) but are used as tuning parameters that can be 
manually selected on-line. 
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