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ABSTRACT
This paper investigates the fundamental properties of
active magnetic bearing controllers from the standpoint
of output regulation in the presence of deterministic
disturbances. The treated disturbances are stepwise and
unbalance forces acting on the rotor. A transfer function
approach is used in the analysis. The general structures
of controllers achieving displacement or current
regulation for stepwise force and achieving
displacement, current or force regulation for unbalance
force are derived. The mutual relations and equivalence
between the independently developed controllers are
clarified. A direct synthesis method of constructing
controllers achieving specified performances is also
shown based on these analyses.

INTRODUCTION
Various control methods of achieving unique
performances, which are impossible for mechanical
bearings, have been proposed and developed for active
magnetic bearings. For example, in order to reduce a
steady-state position error to zero for unknown constant
disturbances, integral action is usually incorporated into
the feedback loop. The virtually zero-power control has
been used in space instruments [1, 2] and a magnetically
levitated carrier system [3] in which permanent magnets
provide bias flux. It makes the control current converges
to zero for any static disturbances, which means zero
power dissipation under steady loads.
A number of controllers compensating the effects of
rotor unbalance have been proposed. Pioneering works
were carried out by Dr. Habermann et al. [4, 5]. They
patented two control circuits which

[H.1] amplify synchronous components of the
displacement sensor signals [4],

[H.2] filter out synchronous components from the
displacement sensor signals [5].

Both are characterized by the use of coordinate
conversion between fixed and rotating reference
systems. Another approach is observer-based
compensation [6, 7]. Unbalance forces acting on the
rotor are estimated by an observer; synchronous
components are eliminated from rotor displacement, coil
current or electromagnetic force by adjusting control
input based on the estimation.
The author has proposed to apply a transfer function
approach to clarify the essential properties of these
controllers [8, 9]. This paper presents a unifying point of
view to the controllers based on these analyses so as to
show a perspective of the control of magnetic bearings.
A direct synthesis method of constructing controllers
achieving specified performances is also presented.

CLASSIFICATION AND NOTATION
The controllers will be classified according to:

(1)  disturbance to be cancelled ( w ):
stepwise force stepw  or unbalance force unbw ,

(2)  variable to be regulated ( y ):
displacement x , current i  or bearing force f ,

(3)  equation in calculating the control input:
state equation or convolution integral.

We introduce a notation:

0/ →wy , (1)

which means that output y  converges to zero as ∞→t
even in the presence of disturbance w .

BASIC MODELS
Figure 1 shows a single-degree-of-freedom-of-motion
model, which will be used in discussing regulation
problems for stepwise force. The equation of motion is
given by
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)()()( twtftzm zz +=&& , (2)

where z is the displacement of the rotor, m  is the mass
of the rotor, zf  is electromagnetic force acting on the
rotor and zw  is disturbance force acting on the rotor.
The electromagnetic force is approximately given by

)()()( tiktzktf zisz += , (3)

where ik  and sk  are the gap- and current-force
coefficients of the electromagnet.
Assuming that the disturbance is stepwise, the dynamics
are represented with transfer functions as
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Figure 2 shows a two-degree-of-freedom-of-motion
model related to translation [8]. The equations of motion
are

tmtiktxktxm xis ωεω cos)()()( 2++=&& , (7)

tmtiktxktym yis ωεω sin)()()( 2++=&& , (8)

where x  and y  are the displacements of the geometric
center O of the rotor in the radial directions, xi  and yi
are the control currents in the x- and y-directions, ω  is
the rotational speed of the rotor, and ε is the amount of
static unbalance of the rotor.
Complex variables are introduced for simplifying
analysis.

)()()( tjytxtxc += , (9)

)()()( tjititi yxc += , (10)
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yxc emtjwtwtw ωεω2)()()( =+= . (11)

The transfer function representation of the dynamics
given by (4) and (5) becomes
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where
2εωω mA = . (14)

REGULATION FOR STEPWISE FORCE
The current is treated as control input in this paper.
When linear control laws are applied, control input is
generally represented as
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)( sZ

sg

sh
sI z −= , (15)

where )(sg  and )(sh  are polynomials satisfying

(A.1) They are coprime.
(A.2) The closed-loop system becomes stable.

Displacement Regulation
Substituting (15) into (4) gives
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where

)()()()( 00
2 shbsgasst +−= . (17)

FIGURE 1: Basic model with single degree of freedom
of motion

FIGURE 2: Basic model with two degrees of freedom of
motion
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To achieve
0/ →stepwx , (18)

the controller must have a pole at origin, that is
)(~)( sgssg = , (19)

where )(~ sg  is an appropriate polynomial. Figure 3

shows a general form of the controller. Integral action is
included in the compensation as well known.

Current Regulation
Substituting (16) into (15) gives
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To achieve
0/ →stepwi , (21)

the controller must have a zero at origin, that is

)(
~

)( shssh = , (22)

where )(
~

sh  is an appropriate polynomial. A general

form of the controller is presented by Fig.4 (a). It
implies that an approach of achieving (21) is

•  Feeding back the velocity signal of the rotor [1],

because velocity is the time derivative of displacement.
The block diagram in Fig.4(a) can be modified as shown
by Fig.4(b) because
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where τ  is a parameter introduced for the
transformation. Figure 4(b) implies that another
approach of achieving (21) is

•  Feeding back the integral of current [2][3].

Force Regulation
It is clear from Newton’s second law of motion that

0/ →stepwf , (24)

is impossible because the forces acting on the rotor must
be balanced for the rotor to remain at rest.

REGULATION FOR UNBALANCE FORCE
The process of analysis in this section is similar to that
in the previous one. When a linear controller is used, it
can be generally represented as
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where )(sgc  and )(shc  are coprime polynomials with

complex coefficients, which are selected for the closed-
loop system to be stable.

Displacement Regulation
Substituting (25) into (12) gives
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where

)()()()( 00
2 shbsgasst ccc +−= . (27)

To achieve
0/ →unbwx , (28)

)(sgc  must have a factor )( ωjs − , that is

)(~)()( sgjssg cc ω−= , (29)

where )(~ sgc  is a polynomial with complex coefficients.

A general form of the controller is shown by Fig.5 (a)
where complex variables are used. Figure 5 (b) shows
the rewritten block diagram with real variables where
the internal model of disturbance has a state-space form.
Figure 5 (c) shows another equivalent controller in
which the control input is calculated by means of
convolution integral instead of state-space equation [8].
In these figures, the following transfer functions are
introduced.
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The controller shown by Fig.5 (b) has a general form
including the observer-based unbalance compensator [6]
while the controller shown Fig.5 (c) has a general form
including [H.1].

Figure 3: Contoller for displacement regulation

(a) Velocity feedback type

(b) Current feedbak type

Figure 4: Contoller for current regulation
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Current Regulation Control
Substituting (26) into (25) gives
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To achieve
0/ →unbwi , (32)

)(shc  must have a factor )( ωjs − , that is
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where )(
~

sh  is a polynomial with complex coefficients.

A general form of the controller is shown by Fig.6 (a)
where complex variables are used. Figure 6 (b) shows a
modified version with a minor feedback loop where a
complex parameter )( cs jααα +=  is introduced for the

transformation. The rewritten block diagram with real
variables is shown by Fig.6 (c). Figure 6 (d) shows
another equivalent controller in which the control input
is calculated by means of convolution integral. In these
figures, the following transfer functions are introduced.
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The controller shown by Fig.6 (c) has a general form
including the observer-based current regulation
controller [7] while the controller shown by Fig.6 (d)
has a general form including [H.2].
In general, the rotor does not rotate about its axis of
inertia exactly even if (32) is achieved. Such rotation is
realized only when

2
0 ω<<a , (35)

[8]. The condition (35) is satisfied when the rotation
speed is very high or the bias flux is zero ( 00 =a ).

Force Regulation Control
From Eq.(3), the variable component of bearing force
can be estimated by
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Substituting (26) and (31) into the Laplace
transformation of (36) gives
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To achieve
0/ →unbwf , (38)

the numerator must have a factor )( ωjs − , that is

)()()()( 00 skjsshbsga ccc ω−=− , (39)

where )(skc  is a polynomial with complex coefficients.

When the component synchronized with rotation is
removed from bearing force, the rotor rotates about its
axis of inertia exactly [8]. The control objective (38) is
compatible with (32) if 00 =a .

RELATIONS BETWEEN THE CONTROLLERS
Table 1 gives a summary of the analyses. In the table,
the state of “ automatic balancing ” is defined as the state
where the rotor rotates about its axis of inertia.
We can interpret that regulation for stepwise force treats
a DC component while regulation for unbalance force
treats AC components; the latter controllers tend to the
former as 0→ω  except in the case of force regulation.
Current regulation control and force regulation control
have similar performances at high frequencies but not at
low frequencies if 00 ≠a . Especially, force regulation

control loses physical realizability as 0→ω  [9].

(a) Complex-variable representation

(b) Real-variable representation (stace-space form)

 (c) Real-variable representation (convolution-integral
    form)

FIGURE 5: Displacement regulation control
for unbalance force
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(a) Complex-variable representation

(b) Complex-variable representation of current
feedback type

(c) Real-variable representation of (b)

(d) Convolution-integral form of (c)

FIGURE 6: Current regulation control for unbalance force

TABLE 1: Classification of the output regulation control

DisturbanceVariable to be
regulated Stepwise force Unbalance force

Displacement
Zero static error

Integral action

Zero whirling

[H.1]

Current

Zero-power control

Velocity feedback

Integral feedback of current

Zero AC power consumption

[H.2]

Approximate state of “automatic balancing”

Force Impossible
Zero transmitted vibration

Exact state of “automatic balancing”
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APPLICATION TO CONTROL SYSTEM DESIGN
We can directly construct controllers achieving
specified control objectives based on the previous
analyses. For example, a general form of controllers
achieving the objective (21) is given by
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Assuming that compensator is restricted to proper
rational function, a second- or higher-order compensator
is necessary for assigning the closed-loop poles
arbitrarily. Thus, the minimal-order compensator that
achieves both current regulation and pole assignment is
given by
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Replacing the factor s  in the numerator of the controller
(41) by )( ωjs − , we obtain a controller achieving (31)

as
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Figure 7 shows a block diagram with real variables and
coefficients of this controller. Such configuration has
not been reported as a controller realizing an
approximate state of automatic balancing.
It is to be mentioned that controllers for achieving other
control objectives will be constructed in similar ways.

CONCLUSION
The general structures of the controllers achieving
specified performances were derived using a transfer
function approach. The analyses clarified the relation
between the controllers compensating stepwise force
and those compensating unbalance force, and the
equivalence between the independently developed
unbalance compensators. A synthesis method of
constructing controllers with specified performances
was also presented.
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FIGURE 7: Real-variable representation of a current
regulation controller for unbalance force
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