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ABSTRACT
Under certain conditions a coupled system can be decou-
pled by means of feedback control. In this paper a
method is presented to control a hard disc drive proto-
type on AMBs with a decoupling state feedback. In addi-
tion a feedforward matrix for the tracking problem is
presented.
The method is based on a linear analytical model of the
system which is adapted by using frequency domain
measurements. The derivation of the model, the design
of the feedback controller and the feedforward is shown.
Simulations are compared with measurements on the
experimental setup. The current work focuses on
improving the performance of the deocupling control-
lers. 

INTRODUCTION
A rotor on active magnetic bearings (AMBs) is a
strongly coupled system especially due to the gyroscopic
effects. But also at standstill the two radial bearings of a
conventional AMBs are coupled in one plane. A distur-
bance entering on one radial bearing will also have an
impact on the other radial bearing. The consequence of
these effects is that single input single output (SISO)
controllers often used to control AMBs are difficult to
tune since the individual loops interfere with each other.
The couplings get worse for disc rotors (length/diameter
< 1). Methods to tune the SISO controllers under consid-
eration of the other loops are protracted and do not
always lead to a satisfying result. Decoupling filters can
be used instead but they can lead to high order control-
lers or the filter can get unstable [1].
The idea of decoupling control is to control a variable of
a fully coupled plant without influencing the other vari-
ables. Decoupling controllers are known already for a
long time and have been used successfully on various

application fields [1],[2]. Also for magnetic bearings
decoupling controllers have been used. [3] describes
decoupling control by a modal transformation of the dif-
ferential equations.
The method presented in this paper is a decoupling
method in state space. The states of the plant are the
radial displacements of the rotor in a sensor reference
frame and the corresponding speeds of these displace-
ments. When the rotor is spinning the system is fully
coupled.
The classical application of decoupling control is defi-
nitely the tracking problem where the output should fol-
low a given trajectory. Dealing with magnetic bearings
one is most often confronted with the disturbance rejec-
tion problem. Nevertheless there are applications for
active magnetic bearings in tracking problems [4],[5].
Therefore the tracking problem is also treated in this
paper.

THE SYSTEM
The system on which the developed controllers are
tested is a hard disc drive rotor on active magnetic bear-
ings. The rotor consists of a short hub ( 25 mm, L=30
mm) with an aluminum disc ( 85 mm) mounted on it.
The mass of the rotor is about 100 g and the ratio of the
inertial moments is .
The magnetic actuators are heteropolar reluctance type
actuators. The iron cores consist of laminated Fe-Si. The
bearing has an inside stator configuration (tubular rotor).
The outer diameter of the actuators is 20 mm. The actua-
tor coils are driven by linear amplifiers.

THE MODEL
The plant consists of the amplifier, the electromagnets,
the rotor, the sensors and the antialiasing filter. To iden-
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tify the mass and stiffness matrices of the system we
consider the rotor at standstill. Then the two planes xz
and yz are decoupled. Thus a 2 DOF model is suffi-
cient to identify mass and stiffness. The inputs of this
model are two voltages (vixa, vixb) corresponding to
the references for the currents. The outputs are two
displacements (yxa, yxb) expressed in the sensor refer-
ence system. In order to keep the order of the control-
ler low a simple model is used first. The dynamics of
the power amplifier and the filter is necleted. The
inputs of this model are two currents (ixa, ixb), the out-
puts are the same as before (yxa, yxb). The model is lin-
ear, containing the mass matrix of the rotor and the
force matrices of the magnetic actuators. The sensor is
being modeled as a static gain. This simple approach
will allow the use of a differentiator to obtain the state.
FIGURE [1] shows a block scheme of the plant.

FIGURE 1: Open loop model of the AMB system.

The transfer function matrix G2 describes the dynam-
ics of the bearing with the two diagonal terms g11 and
g22 and the cross coupling terms g12 and g21. G2 is not
explicitly measurable but can be reconstructed by
means of closed loop measurements. This method is
described in [6].
The parameters of the model are adapted by a least
square optimization algorithm [6]. Since the real sen-
sor dynamic is included in the measurement and the
parameters of  are fitted to these measurements one
can argue that the model  contains the sensor. FIG-
URE [2] shows the measurement G2 and the model

. 

FIGURE 2: Open loop transfer functions g11..g22
measured (solid) and simulated (dash).

To take into account the rotation the gyroscopic matrix
is estimated using an FEM model of the rotor. This
leads to the fully coupled 4x4 model matrix .

DECOUPLING CONTROL
The method which is used in this paper is a model
based decoupling in state space [7]. The states of the
model are chosen as the displacements of the rotor in
sensor coordinates and the corresponding velocities.
The displacements are measured directly and the
velocities can be obtained by means of a simple differ-
entiator. The state and the plant are given by

The control law is a state feedback Kb with a feedfor-
ward matrix Kf:

FIGURE 3: State feedback and feedforward matrix

Under the assumption that:

we can write:

where  is the lowest derivation order of yi that is
directly influenced by u.  is called the difference
order of the plant relative to yi [7]. The decoupling
feedforward matrix is then given by:
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on condition that D* is not singular. The  are the
transposed column vectors of C. ki represent gains for
each feedforward channel and can be chosen freely.
The condition that D* has to be invertible is the decou-
pling condition.
The decoupling feedback matrix Kb is given by:

 are any constants you like and are used to deter-
mine the closed loop poles of the control system. With
this Kb the closed loop differential equations can be
written as:

The equation for yi is decoupled from yj   and wi
influences only yi. The transfer function from wi to yi
is given by:

SIMULATION
Several time domain simulation of the closed loop sys-
tem have been performed. In the simulations a model
is used that contains not only the bearing dynamics
(including the sensor) but also the measured dynamics
of the power amplifiers and the antialiasing filter. Thus
an additional phase loss is introduced into the simula-
tion. Note that the model used for the design of the
controller does not contain the amplifier and the filter.
The rotor spins at 7200 [rpm]. First the step response
of yxa and yxb after a reference step of 10 [ m] of wxa
is simulated (tracking problem).

FIGURE 4: Step response of yxa (solid) yxb (dash) and
yya (solid) and yyb (dash) respectively.

The two bearing planes yxa and yxb are well decou-
pled. The displacement of yxb is very small. However
the gyroscopic matrix is not completely decoupled yya
and yyb are not zero. The corresponding currents ixa
and ixb are shown in FIGURE [5]. 

FIGURE 5: Currents ixa and ixb with decoupling con-
trol.

Note that the current saturates at 1.2 [A].
To have a comparison the same simulation is done
using a PD feedback controller. The responses of yxa
and yxb are shown in FIGURE [6].
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FIGURE 6: Step response of yxa (solid), yxb (dash)
and yya (solid), yyb (dash) with PD controller.

In order to test the decoupling of the gyroscopic
matrix the tilt coordinates  and  of the rotor are
compared. An impulse is given on the acceleration 
of  (disturbance rejection). In FIGURE [7] the
impulse responses of  and  are shown. 

FIGURE 7: Simulated  and  after an impulse on 
(amplitude 1000 [rad/sec2], duration 11 [ms]) once
with decoupling control and once with PD.

The decoupling controller still works for this case
although  doesn’t remain close to zero anymore.
With PD control the error of  is almost as important
as the error of .

EXPERIMENTAL RESULTS
The feedback controller and the feedforward matrix
have been implemented on an experimental setup of a
hard disc drive prototype on active magnetic bearings.
The system is controlled by a control system based on
a SHARC DSP of Analog Devices. The measurements

with the spinning rotor are performed using a comb
filter in order to get rid of the harmonics due to rota-
tion.

FIGURE 8: Measurement (solid) and simulation
(dash-dot) of  yxa and yxb. 

FIGURE [8] shows the comparison of the measure-
ment on one of the setups and the simulation presented
in the preceding chapters. The measurement do not
match the simulations completely. The amplitude of
yxb is eight times higher than expected.

DISCUSSION
A simple method to decouple an AMB system in state
space was presented. Since the state of the model con-
tains only the displacements of the rotor and the corre-
sponding speeds, a differentiator could be used to
estimate the state vector (speeds of the displacements
in sensor coordinate frame).
The decoupling feedback controller performs well in
simulation even when the simulation model an the
model that was used to design the controller are not
the same (the simulation model contains also the
amplifiers and the filters).
The experimental result on the newest prototype did
not fulfill all the expectations. The earlier implementa-
tion of the same controller on a setup with slightly dif-
ferent actuator-sensor configuration was very
promising. There the decoupling worked more effi-
ciently. The reason for this difference is probably a
transmission zero in the cross coupling terms of the
closed loop system which is more or less dominant.
The present research focuses on taking this into
account improving the decoupling control also for the
latest prototype.
Including the dynamics of the power amplifier and the
sensor into the design model and using a state observer
of higher order might help to improve in addition.
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