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ABSTRACT
The dynamical characteristics of a cracked rotor with an
active feedback control system(AFCS) are theoretically
analyzed in this paper. The effects of control algorithms
and controller parameters on dynamical characteristics
of the cracked rotor are discussed. It is shown that the
dynamical characteristics of the cracked rotor with
AFCS are obviously complex than that of the traditional
cracked rotor system. The fault characteristics of the
cracked rotor, which are often used to diagnose the
crack, will depend on the control algorithm used.
Therefore, it is very difficult to diagnose the crack in the
rotor system with AFCS. If the effect of the crack is not
considered in designing the controller, the rotor system
will lose stability in some cases when cracks appear.

INTRODUCTION
Active vibration control technology of rotating
machinery, especially a series of successful applications
of active magnetic bearings, provides a possibility to
design high speed rotating machinery with small
vibration and high stability. With the further
development of the active vibration control technology,
the smart machine technology, which integrates active
vibration control, diagnosis, prognosis and correction,
can guarantee an optimal condition of the machines with
respect to higher performance and higher reliability for
any state of the operation during the machines life
period. This advanced technology will become a new
research focus in the future.
Nowadays, almost research still focuses on the active
vibration control, which includes developing new
actuators and sensors, dynamics and modeling of active
rotor system, control algorithms and fault detection of
actuators and sensors. A few papers study the fault
diagnosis in the active rotor system with active feedback
control system(AFCS).

The diagnosis of faults in the active rotor system is a
key stage in the smart machine technology. Only if the
faults can be correctly diagnosed, the system can take a
correct correction procedure. In order to correctly
diagnose faults, the basic dynamic behaviour of the
active rotor system with faults should first be studied,
since there exist many differences in the fault
characteristics of rotor systems between without and
with AFCS.
It is well known that cracks may appear in the rotating
shaft due to material fatigue at some time during
machines life period and can result in calamitous
accidents if undetected. It is very interesting to know
what will happen when the cracks appear in rotor
systems with AFCS.
There are two kinds of problem to be studied in the
cracked rotor with AFCS. First, the AFCS, generally, is
a time variant system; the stiffness, damping and mass
of the active rotor system may be changed with time
or/and rotational speed according with control
algorithms. Therefore, the dynamics of the cracked rotor
with AFCS will be different to that with invariant
parameters. What are the main differences in the
dynamic characteristics between the cracked rotor with
AFCS and the general cracked rotor? Is it possible to
use the methods used before to detect cracks in active
rotor system? If not, how to detect the crack in the
active rotor system?
Secondly, cracks in the rotating shaft make the stiffness
of the rotor system periodically time-variant due to the
effect of the opening and closing of the crack, which
will result in the potential instability of the rotor system.
However, the conventional controller design does not
consider this problem, therefore there are many
problems to be studied, for example, whether will the
original AFCS continue to provide stable control when a
crack appears? Can and how will the AFCS suppress the
instability of the cracked rotor? How to design a stable
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controller for rotor systems with periodic time-variable
parameters?
The dynamic characteristics of the cracked rotor with
AFCS are studied using a simple rotor model in this
paper. First, we summarize in brief the basic dynamic
characteristics of the uncontrolled cracked rotor. Then,
the effects of uncoupled PD feedback and optimal
control algorithms and the controller parameters on the
dynamics of the active cracked rotor are analyzed.
Finally, the conclusions and the problems to be studied
in the future are given.

SYSTEM MODEL OF CRACKED ROTOR

Rotor model
The rotor system is a massless flexible shaft with a
middle disk, which is supported on two identical rigid
bearings as shown in FIGURE 1. An active actuator(for
example, active magnetic bearing) is located in the disk
position as a damper in order to control the vibration of
the disk. There is a transversal crack close the middle
disk. The stiffness of uncracked rotor system is
symmetric and the damping at the middle disk due to
the air dynamical effect is viscous.
The rotor system can be considered as Jeffcott rotor, the
equations of motion of the rotor system in stationary
Cartesian co-ordinates can be written as:

FIGURE 1: Cracked rotor model with AFCS
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Where x and y are the displacements of the disk in the
stationary coordinate system. K is the stiffness matrix of
the shaft in the disk position. 

D
m  is the equivalent disk

mass, c  is the viscous damping coefficient, µe  is the
unbalance eccentricity between the centre of the gravity
and the geometric centre of the disk, φ  is the positional
anguler of the imbalance with respect to the centre

direction of the crack(i.e., the minimum stiffness
direction ζ).
Dividing both sides by 

stD
m δω 2 , we obtain the non-

dimensional equations of motion of the cracked rotor
system as follows:
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Where 
stDD

xX δ/= ,
stDD

yY δ/= . 
st

eU δµ /=  is the rotor
unbalance parameter, 

crD
mc ωξ 2/=  is the viscous

damping ratio, 
cr

ωω /=Ω  is the rotating speed ratio. 
st

δ
is the corresponding deformation of the shaft due to the
weight of the rotor. 

Docr
mk /=ω  is the critical speed of

the uncracked rotor. ko is the stiffness of the uncracked
rotor. tωτ =  is nondimensional time. )(τK  is the
nondimensional stiffness matrix of the cracked rotor
system. Dot and prime refer to differentiation with
respect to t and τ, respectively.

Crack Model
When there is no crack in the rotating shaft, )(τK  will
be an invariant symmetrical diagonal matrix in which
the diagonal element just is the stiffness of the
uncracked rotor. When there exists a crack in the rotor,

)(τK  is nonlinear and time varying during operation
due to the effect of the crack.
The variations of the stiffness of the rotor are continued
when a cracked rotor rotates slowly under the load of its
own weight, the crack will open and close once per
revolution. The closing and opening of the crack will be
determined by the tension state of the crack area. The
periodic closing and opening of the crack is called
“breathing” action[1,2]. Since an exact model of the
“breathing” crack is quite complicated, the variation of
stiffnesses of the cracked shaft in the rotating coordinate
system is often considered as the following form:
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where kζ and kη are the stiffnesses of the rotor in the
minimum and maximum stiffnss directions in the
rotating coordinate system, ζ and η, in FIGURE 1.

ζmk (or ηmk ) and ζk∆ (or ηk∆ ) are the average stiffness
and the variations of stiffness of the cracked rotor in the
ζ (or η) direction, respectively.
Transferring from the rotating coordinates to the
stationary coordinate and nondimensionalizing, we
obtain the nondimensional stiffness matrix of the
cracked rotor as follows:
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where  { }τζηζη cos)]1()1[()]1()1[( 
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{ }τζηζη  cos)]1()1[( )]1()1[( 
4

1
kkkkk −−−++−+=∆ . ηk  and ζk  are

the ratios of the stiffnesses of the cracked rotor in the η
and ζ directions to the stiffness of the uncracked rotor
ko, respectively, and depend on the crack depth.
Eq.(2) with Eq.(4) are the general equations of motion
of the cracked Jeffcott rotor in the steady state case. It is
a linear system with periodic stiffness coefficient and an
exact solution is not possible. The numerical methods
can be used to get the solutions in order to analyse the
unbalance responses of the cracked rotor system.

Control Model
The state equations of the cracked rotor system in Eq.(2)
can be written as
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Where A is the system matrix, T]  [ xxq ′=  is the state
vector of the rotor, T

yx
uu ] [=u  is the control force

matrix. fe  is the external force vector which includes the
rotor imbalance and the gravity force. T

DD
YX ]  [=x . I is

the unit matrix. 2/)()( Ω= ττ KK . )/2( Ω= ξdiagC . M=I.

Open-loop PD control   First, we use simple open-loop
uncoupled proportional (P) and derivative (D) feedback
control. For the simple open-loop PD feedback control,
it is assumed that the AFCS produces a force direct
according to measuring position and velocity of the
disk. Then, the force is fed into the system with constant
gain negative feedback[5]. So the control force can be
written as:

q
C

q
K

u ′
Ω

−
Ω

−= FF
2

                                (6)

Where 
F

K  and 
F

C  are P and D gain matrices which are
independent on the rotational speed.

Optimal control without the crack  Generally, the
effect of the crack on the AFCS, especially controller, is
not considered at initial design stage. The controller is
designed only according with the uncracked rotor
system. In this case, )(τK  in Eq.(5) is a time invariant
matrix and equals the stiffness of the uncracked rotor,
i.e., )diag(1/)( 2Ω=τK .
Consider the quadratic performance index given by

( )dtTT RuuQqqJ += ∫
∞ 

0   

                              (7)

where Q and R are the positive semidefinite and positive
definite weighting symmetric matrices, respectively,
then the solution to minimization of J is the optimal
control law given by

PqBRu T1−−=                                     (8)
where P is the solution of the following seady state
algebraic Riccati matrix equation.

0QPBPBRPAPA T1T =+−+ −                        (9)

If the system [A,B] is controllable and [A,D] is
completely observable, where D is any matrix such that

QDDT = , the positive definite solution matrix P always
exists and the controlled system is asymptotically stable
and the performance index can be reached. As the
result, the optimal control force vector 

optu , can be
written using the feedback gain matrices as

{ }qCqKqC   KPqBRu p

T1 ′+−=−=−= −
optoptopttoopt

][         (10)

Where PBRCK T1
pp

−=][ toto , 
top

K and 
opt

C  are optimal
feedback gain matrices. In fact, the optimal control can
also be considered as a general PD control in which the
feedback gains depend on the rotational speed.
Finally, the equations of motion of the active cracked
rotor system with AFCS can be written in the following
general form:
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Where 
c

C  and cK  are feedback gain matrices of the
controller and depend on the control algorithms. Eq.(11)
is the general equations of motion of the active cracked
rotor system. The steady state unbalance responses are
obtained by numerically solving these equations.

FLOQUET STABILITY THEORY
Either the cracked rotor system without or with AFCS is
a linear periodic time varying system, the Floquet
theory should be used in order to analyse the stability of
the system. From Eq.(11), we obtain the pertubation
equations of motion of the cracked system with AFCS
as follows:
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So, the first order state pertubation equations of motion
of the system can be obtained and written in the matrix
form as.

qAq
CCMKKM

I
q

11
δτδ

τ
δ )]([

)())((

0
’ =








+−+−

= −−
cc

  (13)

Where { }T

DDDD
YXYX ′∆′∆∆∆=       qδ . )2()( += AA  is a

periodic coefficient matrix with period π2 .
From the Floquet stability theory, we should first have
to calculate the transition matrix of the periodic time
varying system over a period T= π2 , )( . This matrix
will tell us how the state vecror q(τ) of the system has
changed after one period T. The relation of the state of
the system after one period T with the initial state can be
expressed as

)()()( qq =+ T                           (14)

It is clear that if the transition matrix )(  is known, the
stability  of  the  system  can   be  determined   from  the
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 eigenvalue of the following equation:

0)( =− Iµ                             (15)

Where µ refers the Floquet multiplier and gives the
conditions of the stability. If the modulus of every
eigenvalue µ  is less than unity, the system is stable,
otherwise the system is unstable. If fact, µ  is the factor
of increase or decrease of the vibration amplitude of the
cracked rotor system after one period T.
Although the stability of the periodic time varying
system can be determined from the transition matrix of
the system, unfortunately, there is no general analytical
method for calculating the transition matrix )(  for
multi-variable systems. Therefore, the problem for
determining the system stability becomes to numerically
calculate the transition matrix )( .
To obtain the )( , the period T is divided in a number
n of intervals of length h=T/n, in such a way that it is
possible to consider that )( iA  is a constant on each
small interval [ih (i+1)h], and so, to calculate
elementary transition matrices )( i  over the different
intervals by using following formula given in [3]:

( ) 




 +++= ++ )(

2
  )()(

2 11 iiii

hh τττ AIAAI           (16)

The finial transition matrix over one period is given by

)0()1().......()1-().......2-()1-()( iinnT =             (17)

So, we can easily obtain numerically the transition
matrix over a period T, )( , the stability of the cracked
rotor with or without AFCS can be analysed by the
Floquet method.

RESULTS AND ANALYSE

The Dynamics of the Cracked Rotor without AFCS
Before discussing the stability and unbalance response
of the cracked rotor with AFCS we briefly summarise
the main results of dynamic behaviour of cracked rotor
systems without AFCS.
(1). There are many super-harmonics in the vibration
signals and subcritical resonances in the vibration speed
response curves due to the crack breathing action. The
former is produced by the periodic time-variant system
and the reason for the latter is that one of the super-
harmonics resonates at the subcritical speed. Note that
the 1/n-th order subcritical resonance is caused by the n-
th order super-hamonic vibration component.
(2).The crack mainly results in the additional resonances
at ½, 1/3, 1/4…of main critical speed except the main
resonsnce, or 2X, 3X, 4X…revolution super-harmonic
components, especially for the 1/2 of the crirical speed
or the 2X component. In some cases, the 2X vibration
amplitude is greater than the 1X vibration amplitude.

(3).The motions of the cracked rotor are quite
complicated due to existence of the 1X, 2X,
3X…frequency of the rotational speed in the vibration
signals, but the period of these motions is equal to the
period of the rotor motion.
(4). With the increase of the damping, the resonant
amplitudes in both the main critical speed and the
subcritical speeds will decrease greatly.
(5). For a given crack depth, the 1X revolution
amplitude is associated with the rotor unbalance and the
position of the unbalance relative to the crack direction.
It is maximun when the unbalance is in phase with the
crack, and minimum when out of phase with the crack.
With the increase of the rotor unbalance, only the 1X
amplitude increases, the other 2X, 3X… amplitudes do
not change at all since the subcritical resonances are
caused by the gravity.
With the increase of the crack depth, the 2X and 3X
amplitudes or the 1/2 and 1/3 sub-critical resonant peaks
increase obviously, as shown in FIGURE 2. The main
resonant speed of the cracked rotor decreases with the
increase of the crack depth, but its change is very small
and it is impossible to use this change to detect the
existence of a crack.
The damping ratio remains virtually constant during
operation of machines, the 2X and 3X amplitudes
change in the run-up or run-down operation can be used
to as indexes for the detection of the cracks. When the
rotor is running at a constant speed for a long period, the
2X and 3X amplitudes increase with the crack growth.
This information can be used to detect the cracks as[4].

0 0.5 1 1.5 2
0

1

2

3

4

FIGURE 2: Effect of Crack Depth on Rotor Vibration

(6).The existence of the crack produces more unstable
regions except in the vicinity of the main critical speed.
The unstable regions near the rotational speeds at the
1/2, 1, 2 of the critical speed will expend with the
increase of the crack depth when the external damping
is relative small. Besides the three larger unstable
regions, there exist other regions at lower speeds, but
these regions are very narrow. If the damping of the
rotor system is large, the unstable regions will
disappear.
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The Dynamics of the Cracked Rotor with AFCS

Open-loop PD control system  The effects of the open-
loop uncoupled PD feedback control on the vibration of
the cracked rotor and system stability are shown in
FIGURES 3 and 4, respectively. In fact, the negative
and positive feedback P controls are possibly used to
adjust the locations of resonant speeds, only the
negative feedback D control is used to reduce the rotor
vibration or to improve the system stability.
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FIGURE 3: Effect of PD Gains on Rotor Vibration

It is shown that the effect of the uncoupled negative P
feedback control alone on the rotor system is to increase
the resonant speeds and decrease the 2X and 3X
amplitudes, but the positive P feedback acts in the
opposite effect. The negative D feedback control only
changes the vibration amplitude in resonant regions, but
does not greatly change the critical speeds. Although the
2X and 3X amplitudes change with the P or D gains, the
sub-critical resonance also appears at the 1/n of the
equivalent main resonant speed of the system. The 2X
and 3X amplitudes will depend on the original damping
of the rotor system and PD gains. Only if the uncoupled
P or D control is fed to the system alone and the gain is
known, is it possible to use the traditional method to
detect the crack in the active rotor system. If the
combination PD control is used, the problem becomes
much more complex since there are three possible
factors which can make the 2X and 3X amplitudes
increase. In fact, the traditional diagnosis methods of
cracks can be considered as a point since these methods
just use the information in a fixed point, the introduction
of the AFCS will make the point become to an area or
set.
Since the uncoupled P and D controls act as additional
stiffness  and  damping  effects,  respectively,  therefore,

with the increase of the negative D feedback gain, the
unstable regions of the cracked rotor system narrow or
even disappear. The unstable regions narrow and move
towards the high speed with the increase of the negative
P feedback gain, but widen and move towards the lower
speed. The reason for this is that the equivalent stiffness
of the rotor system changes with the P gain.
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FIGURE 4: Effect of PD Gains on Rotor Stability

Close-loop optimal control system The optimal control
based on the uncracked rotor system only can make the
uncracked rotor system asymptotically stable and
minimize the performance index. When the crack
appears, the optimal control cannnot always guarantee
the cracked rotor system is stable, the instability will
occur in some cases as shown in FIGURE 5. The
feedback gains of the optimal controller in the steady
state, i.e., the additional stiffness and damping, are
changed with the rotational speed, there possibly exist
resonances in the vibration speed response curve, but
the subcritical speeds are not exactly equal to a fraction
of the resonant speed except the feedback gains are
independent of the rotation speed. Whether the main
and subcritical resonances appear or not in the active
rotor system mainly depends on the weighting matrices
Q and R. FIGURE 6 shows the effect of the R and Q on
rotor unbalance response. Where the dotted line is for
the cracked rotor wthout AFCS, the dashed line for the
active cracked rotor with Q=I=I, the lines above the
dashed line are with Q=I and R=diag( r=5,10,20,50,100
and 500), the lines below the dashed line are with R=I
and Q=diag(5) or diag(10). It is shown that if R is much
larger, i.e., we pay more attention to the controller and
less to the rotor vibration, the effect of the controller or
the additional damping and stiffness is very weak, the



resonances will appear and locate at almost the same
speed positions as that without AFCS. However it is still
difficult to diagnose the crack since the damping and the
stiffness of the rotor system vary with the rotational
speed. When R is small and the Q is large, i.e., we pay
more attention to the rotor vibration and less to the
controller, the vibration of the rotor system is much
smaller and the resonances do no appear at all. In this
case with small rotor vibration, we can not get any
information about the 2X and 3X vibrations from the
unbalance response. Therefore, for the cracked rotor
system with AFCS, it seems impossible to use the
traditional method to detect the crack due to frequency
variant parameters, new methods for detecting the crack
in the active rotor system should be developed.
Since there still exists instability problems in the
cracked rotor with optimal feedback control of the
uncracked rotor, the controller design should be based
on the cracked rotor system. In this way, the feedback
control can make the cracked rotor stable and minimize
the rotor vibration. The control problem of periodic
time-varying systems is very complicated and has been
studied[6,7]. The optimal control of the cracked rotor is in
progress, the results will be reported in others.

FIGURE 5: Stability of the Cracked Rotor with
Optimal Control Gains of Uncracked Rotor System

FIGURE 6: Unbalance Response of the Cracked Rotor

with Optimal Control Gains of Uncracked Rotor System

CONCLUSIONS
The effect of the crack on the rotor system should be
considered in designing the controller, otherwise the
unstable motions in some regions of the rotational
speeds possibly occur when crack appears.

The introduction of the AFCS in the rotor system will
obviously change the dynamic characteristics of the
cracked rotor system, make an index for diagnosing a
crack from a point to a set or area. The reason for this is
that the active rotor system with active feedback control
is frequency variant. It is very necessary to develop new
methods for diagnosing cracks in the active rotor
systems.
The results also highlight many problems for further
study, which include: (a)What are the differences in
dynamic characteristics between the active rotor and
uncontrolled rotor system when cracks appear in order
to present a new fault index? (b)How to detect cracks in
the active rotor system? (c) The controller design of the
active rotor system with time or frequency variant
parameters?
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