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ABSTRACT 
Permanent magnet (PM) self-bearing motors provide 
independent bearing and motor functionality in a single 
magnetic actuator. Typical designs have used slotted 
stators and thin surface mounted PM's in order to provide 
a minimum reluctance path for the bearing control flux 
such that adequate bearing forces are generated. Such 
designs necessarily result in smaller torque production 
due to the thin PM's and have large torque ripple due to 
the slotted stator. This paper introduces the principles of 
motoring torque and bearing force of the slotless thick 
PM's self-bearing motor and the proposes a new coil 
winding method to minimize the effect of coil failure 
without any redundant devices. Comparisons of the 
stiffness and stability characteristics between typical and 
proposed coil winding methods are presented. The 
analysis indicates that the proposed coil winding method 
can minimize the coil failure effects and the motor can 
levitate and rotate stably in spite of the coil failure. 
 
INTRODUCTION 
Self-bearing motors (also termed integrated motor 
bearings and bearingless motors) combine magnetic 
bearing and motoring functionality into a single magnetic 
actuator to perform both radial force and torque 
production.  Such designs reduce the overall length of a 
motor because no mechanical bearings are required.  This 
effectively increases power density, reduces weight and 
reduces the susceptibility to rotordynamic vibrations in 
many applications. PM self-bearing motors have been 
studied by Bischel [1], Chiba [2], Schoeb [3], and Okada 
[4], among others for a variety of applications. One 
commonality of these designs is that attractive forces 
between the rotor and stator (Maxwell-type forces) 
provide the bearing function, and magnetic forces on 
current carrying conductors (Lorentz-type forces) 
produce the motoring torque. As a consequence, an 
inherent trade-off between motoring torque and bearing 
force exists for these designs as thicker PMs lead to 
larger torque but increase the path reluctance for the 
bearing flux leading to smaller bearing forces. In order to 
optimize this trade-off and produce sufficient torque and 

bearing force, the stators of these designs have slots that 
provide a minimum reluctance flux path. A disadvantage 
of these slotted designs as discussed in [5], is the 
significant detent torque and cogging torque that is 
produced between the stator teeth and the rotor PM’s. 
This is especially problematic in fine pointing and 
tracking applications. This paper focuses on a slotless 
self-bearing motor that uses the Lorentz type force to 
produce both the motoring torque and the bearing forces. 
A derivation of the linearized system equations of 
Maxwell type destabilizing forces due to PM’s and 
winding flux as well as Lorentz type force is also 
presented. For producing both motoring torque and 
bearing forces and reducing cogging torque without any 
additional coiling and or redundant devices, many 
winding stations are needed, and fault tolerance to coil 
failure is, therefore, an important issues in the design for 
system reliability. 
Fault tolerant operation of electromagnetic devices in the 
face of multiple coil and or amplifier failures is most 
commonly accomplished by large number of redundant 
devices. Most of the fault tolerant systems have focused 
on the amplifiers and or sensors. Further, several schemes 
have recently been proposed for achieving reliable 
electromagnetic devices including controller board 
approaches that make use of re-bias linearization when 
coil failure occurs [6][7]. Fault tolerance to coils can be 
achieved by an increased number of poles and coils in the 
actuator, and the redundant devices will be needed. These 
redundant devices may lead to a weight and cost debit. 
Therefore, this paper introduces the principles of 
motoring torque and bearing force of the slotless thick 
PM self-bearing motor and proposes a new coil winding 
method to minimize the effect of coil failure without any 
redundant devices. 
 
ANALYSIS 
Figure 1 shows the layout of the actuator consisting of 
M=8 PM pole pairs attached to the rotor and Nseg=4 
individually controlled winding segments attached to the 
stator. Each winding segment in the motor is an arc of π/2 
radians and is attached to the slotless back iron. The 



windings occupy Ns stations along each winding segment 
ID with Nw individual wires per station. The control 
force and torque generation principle is straightforward 
for this design. Each segment generates a traction on the 
surface of the rotor due to the PM flux linking with the 
segment windings (a Lorentz-type force). By precise 
construction of the motor, the tractions due to segments 
1-4 are resolved into the forces Fx,B,1, Fy,B,2, Fx,B,3 and 
Fy,B,4. By proper selection of the control currents in each 
segment, the segment forces are modulated to produce 
independent bearing forces and motoring torque. 
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FIGURE 1: Actuator Layout and Force Generation 

 
Air Gap Flux and Winding Current Distributions 

 
FIGURE 2: Air gap flux and current distributions for 

one segment 
 
Figure 2 shows a single segment of the actuator unrolled 
as an approximation to the true arc geometry. Such an 
approximation is used for the permeance model [8] and is 
valid to the extent that the rotor radius R is large. The 
PMs of average arc length, wm, and radial thickness, tm, 
are attached to the rotor and separated by a low 
permeability material. The windings have radial 

thickness, tc, and are separated from the PMs by the 
nominal radial air gap, g0. Also shown in Figure 2 is the 
ideal air gap flux due to the PM’s, the ideal air gap flux 
due to the windings and the ideal current distribution. The 
ideal air gap flux distribution due to the PMs in each 
segment is: 
 

( )( ) ( )sinm mB B M tφ φ φ ω= −                    (1) 

 
where ( )mB φ  is the maximum flux density crossing the air 
gap for the rotor in an eccentric position, and calculated 
by: 
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where kml is the derating factor for magnet-to-magnet 
leakage and is computed as: 
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The distribution of the winding current in each segment is 
identical with respect to the angular coordinate but is 
different in magnitude. The windings of the motor are 
approximated as a current sheet with the current 
distribution in the kth segment approximated by: 
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π
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where ik is the maximum current in the kth segment and γ 
is the phase angle of the current with respect to the PM 
flux. Finally, the air gap flux due to the winding currents 
is computed using the effective permeance of the winding 
region, air gap and the PMs as seen by the winding flux. 
This expression is : 
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where π/2M is the phase shift of the winding flux with 
respect to the winding current. 
 
Lorenz Type Bearing Forces and Torque 
Given the air gap flux and winding distributions in the 
previous section, several different types of forces act on 
the rotor. Those used for bearing force and torque 
controls are the Lorentz-type resulting from the PM flux 
linking with the winding currents. Referring to Figure 1, 
the Lorentz-type forces are computed by: 
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where Fq,B(φ) is expressed as {Fx,B(φ) Fy,B(φ)}T and L is 
the axial length of the actuator. Flux and current 
distributions are given by eq (1) and (4). The integration 
limits φj-1 and φj of the kth segment and jth winding station 
in eq (6) can be presented as functions of k and j as φj-

1=(j-1)π/(2Ns)+(2k-1)π/4 and φj=jπ/(2Ns)+(2k-1)π/4. 
Similarly, the total torque produced by the actuator is 
computed using: 
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where T(φ) is the total actuator torque, and R is the 
outside radius of the rotor. Control of the actuator such 
that independent torque and force generation is achieved, 
depends upon proper selection of the segment winding 
currents. In the real system Fq,B(φ) and T(φ) vary with 
angular position of the rotor ωt. This selection must be 
done with respect to three control currents, ix, iy and iθ 
that correspond to the forces and torque in each direction. 
The system is over-determined in that a total of four 
segment forces are being used to generate two control 
forces and one torque. Therefore, there are many 
different current relationships to choose from, but the 
simplest is: 
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The magnitude of the Lorentz type forces and torque 
depend upon the displacement of the rotor x and y, and 
the control current ix and iy. These forces and torque are 
linearized using Taylor series expansion at x=y=ix=iy=0. 
The actuator has many winding stations resulting in 
smooth torque and bearing force generation, therefore it 
is assumed that the forces generated by the kth segment 
and jth winding station are concentrated at a mid-point of 
those winding stations. The equation (6) is  approximated 
as: 
 

, 0 , , , H.O.Tq B B q B i B= + + +F F K q K i
0≈

             (9) 

 
where in eq (9) the high order terms are neglected. Q is 
{x y}T , i is {ix iy}T , and F0,B is the Lorentz type 
destabilizing force matrix and calculated by: 
 

( )
( )0, ,

1 1

sin

cos

seg s
N N

kjm

B i B B
k j kjm

K iθ
φ

φ= =

 − = Λ  
  

∑∑F                (10) 

 
In the no fault case the destabilizing forces F0x,B and F0y,B 
are zero due to symmetry. Kq,B in eq (12) is the 
displacement stiffness coefficient matrix of the Lorentz 
type force and calculated by:  
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In the no fault case the diagonal elements Kxx,B and Kyy,B 
are zero and the cross-coupled elements Kxy,B and Kyx,B 
are non-zero. Ki,B is the current stiffness coefficient 
matrix of the Lorentz type force and calculated by: 
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In the no fault case the cross-coupled elements Kixy,B and 
Kiyx,B are zero but the diagonal elements Kixx,B and Kiyy,B 
are not zero. Similarly, the torque equation (7) simplifies 
to: 
 

0 x yT T K x K yθ θ= + +                          (13) 

  
where T0 is the nominal motor torque generated by 
Lorentz forces and calculated by: 
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Kθx and Kθy in eq (13) are open loop torsional stiffness 
coefficients and expressed by:   
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In the no fault case the open loop torsional stiffness 
coefficients Kθx and Kθy are zero due to symmetry. The 
other constant terms are calculated using: 
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Maxwell Type Destabilizing Forces due to PM 
Now examine the sensitivity of the Maxwell type forces 
due to PM to small rotor displacements. The Maxwell 
type forces are dependent only upon the square of the air 
gap flux due to the PM’s, but are not dependent upon the 
current distribution of the winding station. The attractive 
forces between the rotor and stator generated at ith PM 
region are given by: 
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where Fq,M(φ) is the Maxwell type force matrix due to the 
PM’s and expressed by {Fx,M(φ) Fy,M(φ)}T . Similar to the 
analysis of the Lorentz force, Fq,M is also linearized using 
Taylor series expansion at x=y=0. Because there are 
many PM poles in the rotor, it is assumed that the force 
generated by the ith magnet section is concentrated at a 
mid-point of that magnet section, and expressed as 
φim=(i-1/2)π/M+ωt. Equation (19) is approximated as: 
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                      (20) 

 
where in eq (20) the high order terms are neglected. Kq,M 
is the displacement stiffness coefficient matrix of the 
Maxwell type forces due to PM’s and where the only 
diagonal components are non-zero and is expressed by: 
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where Kxx,M and Kyx,M are diagonal elements and also 
independent of ωt. By examining the symmetry of the 
PM flux within the actuator, one can clearly see that the 
cross-coupled displacement stiffness terms should be 
zero and the direct terms should not. 
 
Maxwell Type Destabilizing Forces due to Winding 
Flux 
Finally, the destabilizing side pull forces on the rotor due 
to the winding flux are considered.  In this case, side pull 
forces result even when the rotor is in the centered 
position. Maxwell forces due to winding currents depend 
on the square of the winding flux expressed in eq (5) and 
are given by: 
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In the same way it is assumed that the forces generated at 
any winding stations are concentrated the station’s mid-
point, and linearized using a Taylor series expansion at 
x=y=ix=iy=0. Eq (22) simplified as: 
 

, 0 , , , H.O.Tq W W q W i W= + + +F F K q K i
0≈

             (23) 

 
In the same way the high order terms are neglected, and 
Fq,W is expressed as {Fx,W(φ) Fy,W(φ)}T , F0,W is the 
Maxwell type destabilizing force matrix due to winding 
flux, Kq,W and Ki,W are the displacement and current 
stiffness coefficients matrix, and expressed by: 
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In the no fault case the static force matrix elements F0x,W 
and F0y,W, the cross-coupled elements of the displacement 
stiffness coefficient matrix eq (25), Kxx,W and Kyy,W ,and 
the diagonal elements in the current stiffness coefficient 
matrix eq (26) are zero. The other constant terms are 
calculated by: 
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Dynamic System Equations and Feedback Control 
The equivalent forces can be written in terms of the 
Lorentz type bearing control forces, Fx,B, Fy,B, the 
Maxwell type forces due to PM’s, Fx,M,  Fy,M, and the 
Maxwell type forces due to winding flux, Fx,W, Fy,W. In 
the previous section all these forces were linearized and 
expressed by the displacement and current stiffness 
coefficient. Therefore the dynamic system equation is as: 
 

0- q i= +
..

Mq K q F K i                            (30) 
 
where M is mass matrix, Kq is the displacement stiffness 
coefficient matrix, Ki is the current stiffness coefficient 
matrix, and F0 is the destabilizing force matrix. Each 
matrix can be calculated by: 
 

0 0, 0,B W= +F F F                                (31) 

, , ,q q B q M q W= + +K K K K                       (32) 

, ,i i B i W= +K K K                             (33) 
 

Figure 3 shows the feedback control for the actuator. The 
sensor measurements are used to construct error signals, 
which are fed into PID controllers. The control signals, Vx, 
Vy  and Vθ are combined using a set of summing and 
differencing junctions to produce each segment control 
signal V1, V2, V3 and V4. The sinusoidal current sheet of 
eq (4) is approximated by 12 phases (3 per segment) that 
are constructed using cosine functions that are 60 degrees 
out of phase with one another and by using a special 
winding scheme. 
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FIGURE 3: Self-bearing motor feedback control 
 

Coiling Method 
Figure 4 shows 3 different coil winding methods for a 
segment, where the number of winding stations are 12 
and the 3 phase currents ϕ1, ϕ2, and ϕ3 are considered. 
The arrows indicate the current flow direction and each 
phase is shifted by 60 degrees. Figure 4 (a) is wound 
serially which is the typical used winding method, (b) is 
wound paralelly with unsymmetry and (c) is wound 
paralelly with symmetry.  
 

 
(a) Serial Winding 

 
(b) Unsymmetric Parallel Winding 

 
(c) Symmetric Parallel Winding 

FIGURE 4: Coil winding 
 
SIMULATION RESULTS 
In the previous section the traditional serial winding 
method and two kinds of new winding method were 
presented. In the no fault case the dynamics of the rotor 
under closed loop control are the same. However, when 
the coil in any winding station is open, the system 
dynamics are quite different. As an example of fault 
tolerance of the winding station, let’s consider a coil in 

the number 11 winding station is open due to any physical 
problem. In the typical winding case (a) the forces cannot 
be generated at the winding station 11, 8, 5 and 2, in the 
case (b) at winding station 11 and 8, and in the case (c)  at 
the winding station 11 and 2. A prototype self-bearing 
motor with the properties listed in Table 1 is under 
construction. These properties are used in a simulation of 
the stability and the motor response to a rotating 
unbalance at constant angular velocity of 955 RPM. 
 
TABLE 1: Summary of prototype motor construction 

Property Sym Value 
No. of PM Pole Pairs M 8 

No. of Segments Nseg 4 
No. of Winding Stations per Seg Ns 12 

No. of Wires per Winding Station Nw 85 
Remnance Flux Br(T) 1.01 

Radial Thickness of PM’s tm(mm) 7.75 
Radial Thickness of coil windings tc(mm) 3.87 

Nominal radial air gap go(mm) 0.76 
Rotor Outer Radius R(mm) 50.8 

Motor Length L(mm) 25.4 
 

TABLE 2: Comparison of motor properties for γ=0 
Property No fault 

case 
Serial Unsym. 

parallel 
Sym. 

parallel 
T (Nm) 6.25 5.3 5.78 5.78 
F0x (N) 0 17 8.6 7.7 
F0y (N) 0 -1 1.2 -0.48 

Kxx (N/m) 62188 62156 62035 62159 
Kxy (N/m) 6658 4982 5833 5957 
Kyx (N/m) 6658 6307 6495 6345 
Kyy (N/m) 62188 62032 62247 62123 
Kixx (N/A) 14 9.6 11.7 12 
Kixy (N/A) 1.7 1.7 1.7 1.7 
Kiyx (N/A) 1.7 -1.2 -1.9 -1.5 
Kiyy (N/A) 14 13.9 13.9 14 

 
TABLE 3: Comparison of motor properties for γ=0.01 

Property No fault 
case 

Serial Unsym. 
parallel 

Sym. 
parallel 

T (Nm) 6.24 5.2 5.76 5.76 
F0x (N) 0 16.9 8.5 7.8 
F0y (N) 0 0 1.7 0 

Kxx (N/m) 61723 61715 61582 61716 
Kxy (N/m) 6637 4966 5805 5939 
Kyx (N/m) 6637 6287 6465 6325 
Kyy (N/m) 61723 61684 61840 61707 
Kixx (N/A) 13.9 9.6 11.7 11.9 
Kixy (N/A) 0.5 0.5 0.5 0.5 
Kiyx (N/A) - 0.5 -0.4 -0.9 -0.4 
Kiyy (N/A) 13.9 13.9 13.9 13.9 

 
Table 2 summarizes the comparison of the stiffness 
coefficient and other properties for a phase angle γ=0. The 
simulated results indicate that the torque of the proposed 
parallel winding methods are better than the traditional 



serial winding method compared with no fault case. The 
destabilizing forces F0x and F0y are generated at the fault 
case, in which the destabilizing forces are minimum at 
the symmetric parallel winding. Among the stiffness 
coefficients the diagonal current stiffness coefficients 
Kixx and Kiyy are important parameters in the system, 
because the system is controlled by these. Table 2 
indicates that the proposed symmetric parallel winding 
under a fault condition out performs the other two 
winding methods. Similarly, Table 3 summarizes the 
comparison of the stiffness coefficient and other 
properties for a phse angle γ=0.01. The torque is slightly 
smaller as compared with the case of the phase angle γ=0. 
Again, the symmetric parallel winding method is better 
than the other winding methods in spite of none zero 
phase angle. 

         
(a) X-directional displacement 

       
(b) Y-directional displacement 

FIGURE 5: Comparison of the displacement for γ=0 
 

 
FIGURE 6: Stability criterion for γ=0: (a) No fault, (b) 

Serial winding, (c) Unsymmetric parallel winding, (d) 
Symmetric parallel winding 

 
Figure 5 shows the comparison of the simulated 
displacement of the rotor for a phase angle γ=0. The 
simulation results in figure 5a indicate that the x-
directional displacements of the proposed unsymmetric 

and symmetric winding method are very similar and 
better than the typical serial winding method, however, 
the response of the symmetric winding case is better than 
unsymmetric winding case comparing y-directional 
displacement in Figure 5b. Figure 6 shows the 
comparison of the stability criterion for γ=0 and the 
integral control gain Gi=0, where the saturation and 
nonlinear effects were not considered in this analysis. In 
this analysis Hurwitz stability criterion was used. If we 
select the proportional and derivative gains, Gip and Gid, at 
the upper region of the curve, the system will work stably. 
In the fault case the stable region corresponding to the 
symmetric winding method is better than other winding 
methods.  
 
CONCLUSION 
This paper showed the principles of motoring torque and 
bearing force of the slotless thick PM's self-bearing motor. 
Lorentz type forces and Maxwell type forces due to PM’s 
and winding flux were linearized, and a set of simplified 
system dynamic equations was derived. This paper also 
proposed a new coil winding method to minimize the 
effect of coil failure without any redundant devices. 
Analysis showed that the proposed symmetric parallel 
coil winding method has better performance than typical 
serial coil winding method whether the phase angle γ=0 
or not. 
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