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ABSTRACT 
An equivalent magnetic circuit of 8-pole heteropolar 
magnetic bearing including path reluctances is 
developed with non-dimensional forms of flux, flux 
density, and magnetic force equations. The results show 
that fluxes and magnetic forces are considerably 
reduced for the magnetic circuit including relatively 
large path reluctances. A Lagrange Multiplier 
optimization method is used to determine current 
distribution matrices for the magnetic bearing including 
large path reluctances. Optimizing this cost function 
yields distribution matrices calculated for certain 
combination of 5 poles failed out of 8 poles.  
Control gains are determined based on the conditions 
that the closed loop dynamic properties of a failed 
magnetic bearing should be the same as those of an 
unfailed magnetic bearing. The cross coupled 
stiffnesses due to uneven flux distribution in case of a 
failed magnetic bearing are effectively canceled out by 
use of the cross feedback control.   
 
NOMENCLATURE 
A :   Pole face area 
bsat : Saturation flux density 

g :  Air gap distance 

I :  Current vector 
Vc :  Input voltage vector 

K   :  Current map matrix 
k kp d,  : Control gains 

N :  Coil turn matrix 
n :  Number of coil turns 
q : Number of active poles 
$T :  Reduced distribution matrix 

φ :  Magnetic flux  vector 
κ : Power amplifier DC gain 
ξ :  Sensor sensitivity 

λ :  Lagrange multiplier 

0µ :  Permeability of air 

INTRODUCTION 
Critical applications of  magnetic bearings benefit from 
a fail-safe control approach.  Without this many 
advantages of a magnetic bearing over conventional 
bearings such as oil film or rolling element bearings 
may be diminished. Fault-tolerant control seeks to 
provide continued operation of the bearing  when power 
amplifiers or  coils suddenly fail. The strong coupling 
property of a heteropolar magnetic bearing and 
redefined remaining coil currents make it possible to 
produce desired force resultants in the x and y 
directions even when some coils fail. 
Lyons et al. [1] used a three control axis radial bearing 
structure with control algorithms for redundant force 
control and rotor position measurement. Therefore, if 
one of the coils fails, its control axis can be shut down 
while maintaining control. A bias current linearization 
method to accommodate the fault tolerance of magnetic 
bearings was developed, so the redistribution matrix 
which linearizes control forces can be obtained even if 
one or more coils fail [2], [3]. The fault tolerant 
magnetic bearing system was demonstrated on a large 
flexible-rotor test rig [4]. Na and Palazzolo [5] 
developed an optimization method to realize fault-
tolerant magnetic bearings up to 5 poles failed out of 8 
pole heteropolar magnetic bearing.  
Material path reluctances are usually neglected for the 
analysis of a small magnetic bearing. However, path 
reluctances can affect the magnetic forces and their 
linearization for a large magnetic bearing or a magnetic 
bearing with low permeability material.   
 
BEARING MODEL  
Magnetic Circuit Model 
The magnetic and electric fields of a magnetic bearing 
can be generally described by using Maxwell’s 
equations. There exist some discrepancies between 
Maxwell’s equations and one-dimensional magnetic 
circuit mainly due to flux leakage, fringing, and eddy 
current effects. Finite material path permeability may be 
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included in the magnetic force calculation to better 
predict the current-force relation [6], [7]. Figure 1 
shows the equivalent magnetic circuit of an 8-pole 
heteropolar magnetic bearing including material path 
reluctances.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 1 Equivalent Magnetic Circuit 

 
Reluctances in the air gap are described as; 
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where the nondimensional air gap equations are; 
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Material path reluctances for back iron, pole leg, and 
journal iron segments are described as; 
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where the cross sectional areas, length, and length 
between poles are AA PP ρ= , AA BB ρ= , AA JJ ρ= , 

l kgP = 0 , l kk gB B= 0 , and l kk gJ J= 0 .  
Apply Ampere’s loop law, Gauss’s law, and 
conservation law of fluxes of the magnetic circuit  to 
obtain a matrix relation; 
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The magnetic fluxes in the gap is then described as; 
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where                       ℜ+= αRR̂                              (5) 
 
The second term of  Eq. (5) represents the intensity of 
the material path reluctance.  This term may not be 
neglected for a large magnetic bearing or a magnetic 
bearing with low permeability material. The flux 
density in the air gap is also substantially reduced due 
to the leakage and fringing effects. The leakage and 
fringing were investigated by some researchers [8], [9], 
and [10]. Allaire [10] showed that the flux leakage and 
fringing effects can be approximated by a simple 
scaling factor. The flux density vector in the air gap is 
scaled by the leakage and fringing factor σ ; 
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Magnetic Forces 
The current-force relation including material path 
reluctances and leakage and fringing effects is then 
described as; 
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The parameterϕ  represents either x  or y . Empirically 

determined value of σ  for a typical homopolar 
magnetic bearing ranges from 0.75 to 0.9. The currents 
distributed to the bearing are related to the control 
voltage vector with the distribution matrix [2], [5]. 
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where           [ ]yxb TTTT = , [ ]Tcycxbc vvvV ,,=       

                                               
The bias flux density should be set equal to 2/satb  to 

obtain maximum magnetic forces. The bias voltage for 
obtaining the maximum magnetic force is then set as; 
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A distribution matrix for an unfailed 8-pole heteropolar 
magnetic bearing is;  
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The magnetic force along the ϕ  direction becomes a 

maximum when 
ϕcv  is equal to 

bv . The bias current 
bi  

becomes bvκ for an unfailed bearing. The maximum 

magnetic force of the 8-pole heteropolar bearing along 
the ϕ  direction calculated without material path 
reluctances is simplified as; 
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FAULT-TOLERANT MAGNETIC BEARINGS 
Calculation of Distribution Matrices 
The coil current distribution of bias currents, x  control 
currents, and y  control currents must be redefined in 

the case of single or multiple coil failures in order to 
produce the same force resultants. The optimization 
method for obtaining distribution matrices can be 
applied on a heteropolar magnetic bearing including 
path reluctances. The necessary conditions for the bias 
linearization are [2], [5]; 
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The reduced distribution matrix to be determined is; 
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 A cost function is defined in a manner that the 
Euclidean norm of flux density vector B  is weighted 
with a diagonal matrix P : 
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The weighting matrix P  can be assigned so that the 
load capacity in a specific direction is increased. 
Twelve equality constraint equations are also derived 
from Eq. (11) [5].  
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The Lagrange Multiplier method can be applied to the 

basic problem to solve for $T  that satisfies Eq. (11).  
Define: 
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Partial differentiation of Eq. (15) with respect to ti  and 

λj
 leads to 123 +q  nonlinear algebraic equations to 

solve for ti  and λj
. 
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A vector form of 123 +q  nonlinear algebraic equations 

is; 
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Distribution matrices for a heteropolar magnetic bearing 
including path reluctances are  obtained by solving the 
system of nonlinear algebraic equations shown in Eq. 
(18). A least square iterative method (MATLAB) was 
used to solve the system of nonlinear algebraic 
equations, which yields multiple solutions. Various 
initial guess of it  and jλ  may be tested in order to 

obtain converged solutions. 
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Examples 
The 8-pole heteropolar magnetic bearing used  in this 
analysis has  0g of 0.000508 m, A  of 0.000602 m2, Pl  

of 0.03 m, Bl  of 0.065 m, Jl  of 0.021 m, and n  of 50. 

BP AA , , and JA  are assumed to be identical to A . 

µrel  of 500 is used for calculation of distribution 

matrices. T̂  for 4 adjacent poles failed (5-6-7-8th ) 
magnetic bearings is; 
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T̂  for 2-4-6-7-8th poles failed magnetic bearing is 
shown as; 
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CONTROL DESIGN AND SIMULATIONS 
Linearized Forces   
The nonlinear magnetic forces with path reluctances 
can be linearized about the bearing center position and 
the zero control voltages by using Taylor series 
expansion. 
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Position stiffnesses and voltage stiffnesses are defined 
as; 
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Equations (19) and (20) are reduced to; 
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The calculated position stiffnesses and voltage 
stiffnesses  are shown in Table 1. 
 

         TABLE 1  The Calculated  Stiffnesses 
  

         
4T        

5T  

Kpxx )/( mN  -1221422 -580702 

K pxy )/( mN  0 -183119 

Kpyx )/( mN  0 -183119 

K pyy )/( mN  -46624 -214463 

vK  )/( VN  5 1.09 

  bv )(V  5 1.09 

 
Control Law 
The simple PD control with low pass filters are used to 
design the closed loop system  for unfailed bearings. 
The same closed loop stiffnesses and dampings may be 
maintained before and after coil failure if control gains 
are switched to appropriate values. The decoupled 
linearized forces for an unfailed bearing are; 
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The parameter ξ  is the sensor sensitivity. In general, 
the linearized forces for the failed bearing have 
undesirable cross-coupled position stiffnesses, and the 
direct position stiffnesses along the x  and y  axes are 
usually not symmetric. Cross feedback control forces 
are added in the linearized force equations of the failed 
bearing in order to cancel out the cross coupled position 
stiffnesses. The linearized forces for the failed bearing 
are; 
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The necessary conditions for the same closed loop 
stiffnesses and dampings before and after failure are; 
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This yields control gains for the failed bearing 
operation; 
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The cross feedback gains to eliminate the cross-coupled 
position stiffnesses are; 
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Simulations 
Fault tolerant control system of a horizontal rigid rotor 
supported on magnetic bearings is constructed. A 
symmetric horizontal rigid rotor has mass of 10.7 kg, 
polar moment of inertia of 0.008 kgm2, transverse 
moment of inertia about the mass centor of 0.36 kgm2, 
and bearing locations of 0.22 m on each side of the 
mass center. Unbalances of eccentricity of 2.5 E-6 are 
applied on two bearing locations with a relative phase 
angle 90°. The sensor sensitivity ζ  is 7874 V/m. The 
power amplifier gain κ  is 1 Amp/Volt.  The control 
law was designed with simple PD control and low pass 
filters.  
The following system dynamics simulation illustrates 
the transient response of a rotor supported by magnetic 
bearings during a coil failure event.  A  distribution 

matrix of 1T  is used to distribute currents to the 

unfailed bearings. The parameters pK , vK , and bv  

with 1T  at 1181.0=α ( 500=relµ ) for unfailed 

bearings are –1152000 N/m, 116.78 N/Volt, and 5.836 
respectively.  The designed PD control gains 

pk  and 
dk  

for the unfailed bearings are 10 and 0.03 respectively. A 
new distribution matrix and control gains should be 
provided to produce desired force resultants when some 
coils in a magnetic bearing fail suddenly. The transient 
response from normal operation  to fault-tolerant 
control with 5-6-7-8th coils failed for both bearings was  
simulated for nonlinear bearings with path reluctances 
at 10,000 RPM.  The distribution matrix of 1T  was 

switched to 5678T  when 4 adjacent coils failed at 0.1 

second. The PD control gains pxk , pyk , and dk  for the 

failed bearings were adjusted as  235.3, 205.5 and  0.7 
respectively. Transient response of the orbit at bearing 
A is shown in Fig. 2. Transient response of the current 
inputs to bearing A for the 5-6-7-8th poles failed case is 
shown in Fig. 3. This shows that large currents are 
required to maintain similar dynamic properties before 

and after failure. Transient response of the flux densities 
in Bearing A is shown in Fig. 4.  The adjusted 

distribution matrix of 5678T  yields the required  inactive 

pole fluxes so that the bearing has the necessary forces 
to maintain stability. The load capacity is considerably 
reduced though in the failed bearing.  
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FIGURE 2 Orbit Plot for Normal Operation to the 5-6-
7-8th Poles Failed  Operation 
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FIGURE 4  Flux Densities for Normal Operation to the 
5-6-7-8th Poles Failed Operation 
 
 
CONCLUSIONS 
Material path reluctances are usually neglected for the 
calculation of fluxes and magnetic forces, however, 
they may significantly influence fluxes and magnetic 
forces for a large magnetic bearing or a magnetic 
bearing with low relative permeability. Therefore, 
material path reluctances should be included in the 
calculation of distribution matrices for fault-tolerant 
control.  
A Lagrange Multiplier optimization method is used to 
determine distribution matrices for the magnetic bearing 
including large path reluctances. A cost function is 
defined in a manner that represents load capacity in a 
specific direction. The distribution matrices are  
calculated up to certain combination of 5 poles failed 
out of 8 poles. Nondimensional form of the position 
stiffnesses and voltage stiffnesses are calculated for the 
fault-tolerant magnetic bearings.  
Control gains are determined based on the conditions 
that the closed loop dynamic properties of a failed 
magnetic bearing should be the same as those of an 
unfailed magnetic bearing. Orbits after failure can be 
maintained close to the orbit before failure if 
appropriate control gains are selected after failure to 
maintain the same closed loop dynamic properties.  
Relatively large increase in currents and flux densities 
may be required to maintain the same closed loop 
dynamic properties after failure. Therefore, disturbance 
levels from imbalance, runout or sideloads should be 
maintained at low levels for success of this approach. 
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