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ABSTRACT

An equivalent magnetic circuit of 8-pole heteropolar
magnetic bearing including path reluctances is
developed with non-dimensional forms of flux, flux
density, and magnetic force equations. The results show
that fluxes and magnetic forces are considerably
reduced for the magnetic circuit including relatively
large path reluctances. A Lagrange Multiplier
optimization method is used to determine current
distribution matrices for the magnetic bearing including
large path reluctances. Optimizing this cost function
yields distribution matrices calculated for certain
combination of 5 poles failed out of 8 poles.

Control gains are determined based on the conditions
that the closed loop dynamic properties of a failed
magnetic bearing should be the same as those of an
unfailed magnetic bearing. The cross coupled
stiffnesses due to uneven flux distribution in case of a
failed magnetic bearing are effectively canceled out by
use of the cross feedback control.

NOMENCLATURE

A: Polefacearea

b, : Saturation flux density
g: Air gap distance

| : Current vector

V.. Input voltage vector
K : Current map matrix
kp,kd : Control gains

N : Coil turn matrix

N: Number of cail turns

: Number of active poles

. Reduced distribution matrix
. Magnetic flux vector

: Power amplifier DC gain

: Sensor sensitivity

. Lagrange multiplier

m,: Permeability of air
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INTRODUCTION

Critical applications of magnetic bearings benefit from
a fail-sofe control approach.  Without this many
advantages of a magnetic bearing over conventional
bearings such as ail film or rolling element bearings
may be diminished. Fault-tolerant control seeks to
provide continued operation of the bearing when power
amplifiers or coils suddenly fail. The strong coupling
property of a heteropolar magnetic bearing and
redefined remaining coil currents make it possible to
produce desired force resultants in the x and y
directions even when some coilsfail.

Lyons et al. [1] used a three control axis radial bearing
structure with control agorithms for redundant force
control and rotor position measurement. Therefore, if
one of the coils fails, its control axis can be shut down
while maintaining control. A bias current linearization
method to accommodate the fault tolerance of magnetic
bearings was developed, so the redistribution matrix
which linearizes control forces can be obtained even if
one or more coils fail [2], [3]. The fault tolerant
magnetic bearing system was demonstrated on a large
flexible-rotor test rig [4]. Na and Palazzolo [5]
developed an optimization method to redlize fault-
tolerant magnetic bearings up to 5 poles failed out of 8
pole heteropolar magnetic bearing.

Material path reluctances are usualy neglected for the
anaysis of a smal magnetic bearing. However, path
reluctances can affect the magnetic forces and their
linearization for a large magnetic bearing or a magnetic
bearing with low permesbility material.

BEARING MODEL

Magnetic Circuit Model

The magnetic and electric fields of a magnetic bearing
can be generally described by using Maxwel's
equations. There exist some discrepancies between
Maxwell’s equations and one-dimensional magnetic
circuit mainly due to flux leakage, fringing, and eddy
current effects. Finite material path permeability may be
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included in the magnetic force calculation to better
predict the current-force relation [6], [7]. Figure 1
shows the equivalent magnetic circuit of an 8-pole
heteropolar magnetic bearing including material path
reluctances.

FIGURE 1 Equivalent Magnetic Circuit

Reluctances in the air gap are described as;
,1=12,..,8 D

where the nondimensional air gap equations are;

A

g, =1- Xcosq; - ysing,
c_ X .y
X=—,y=—

Yo 0

Material path reluctances for back iron, pole leg, and
journal iron segments are described as;

r-—l— i=P,B,and J (2

L mamA

where the cross sectional areas, length, and length
between poles are A, =r A, Ag =1 gA,A; =1 A,
lp = kg 15 =kkgg,, and I; =Kk, g,

Apply Ampere's loop law, Gausss law, and
conservation law of fluxes of the magnetic circuit to
obtain amatrix relation;

) ~ A _
—20_IR(g.) +aA(n)|F = NI ©)
m)A[ (@,) +aA®)]
where a= k ,h:rP(erB+erJ)
Mal e Fels

The magnetic fluxesin the gap is then described as;
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F = AN g (4
Jdo
where R=R+aA (5)

The second term of Eq. (5) represents the intensity of
the material path reluctance. This term may not be
neglected for a large magnetic bearing or a magnetic
bearing with low permeability materia. The flux
density in the air gap is also substantialy reduced due
to the leakage and fringing effects. The leakage and
fringing were investigated by some researchers [8], [9],
and [10]. Allaire [10] showed that the flux leakage and
fringing effects can be approximated by a simple
scaling factor. The flux density vector in the air gap is
scaled by the leakage and fringing factor S ;

g =My, (6)

0
where V =R!N
M agnetic Forces
The current-force relation including material path
reluctances and leakage and fringing effects is then
described as;

2 2
SZLTN@ , @)
90

where Q(j ,a,h)=V" ED /=\T —ﬂ(d'?]?fg"))\i

F=-

The parameterj represents either x or y. Empiricaly

determined value of s for a typica homopolar
magnetic bearing ranges from 0.75 to 0.9. The currents
distributed to the bearing are related to the control
voltage vector with the distribution matrix [2], [5].

| =kTV, =kKTV_, ®)

where T= |_Tb Tx TyJ s Vc :[Vb Ve ,ch ]T

The bias flux density should be set equal to b, /2 to

obtain maximum magnetic forces. The bias voltage for
obtaining the maximum magnetic force is then set as;

v =— 9P ©)
Z&mn

A distribution matrix for an unfailed 8-pole heteropolar
magnetic bearing is;
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4 . . AS A _ T
€1 Pl g0 U Ty =ltogartogzs -
é 8 ¢gy U
é e ﬂ“ e Q"u
&4 . 0035@9 -ngéi’P_@g@ A cost function is defined in amanner that the
g é8 g €8 gu Euclidean norm of flux density vector B isweighted
a1 coséé—pg sinaé—pg i with adiagonal matrix P:
= 8 8 o0
é €s g edgu . . . 13
é P 0 . agp ou J(T)=B PB
G100 0 (T) = B(T)" PB(T)
T= g ap o a9 o ﬂ Theweighting matrix P can be assigned so that the
el COSege SNEe g load capacity in a specific direction isincreased.
s €s g €8 g : . : .
é Al 6 Al .U Twelve equality constraint equations are also derived
&1 -cosgc—-~ smg—gl,l from Eq. (11) [5].
é €8 g e 8 gl
é 5 5 U -
e1 cosg%g snf%zg h,(F)=0 (14)
a ;
gl - osééig - smaéig'J The Lagrange Multiplier method can be applied to the
é €8 g é8 a

The magnetic force along the j direction becomes a
maximum when Vg is equal to v, . The bias current i
becomes kv, for an unfailed bearing. The maximum

magnetic force of the 8-pole heteropolar bearing along
the j direction caculated without material path

reluctances is smplified as;

basic problem to solve for T that satisfies Eq. (11).

Define:

((f) = BCF)T PB(F) + &1
i=1

ih; (T) (15)

Partial differentiation of Eq. (15) with respect to t, and
|, leadsto 3q + 12 nonlinear algebraic equations to

solvefor t; and |, .

2 2: 2
ijax - 4s IT}J/:\I'] Iy (10)
T -
° Wi:%:o,i:],Z,....,:%q (16)
FAULT-TOLERANT MAGNETIC BEARINGS ! ~ .
Calculation of Distribution Matrices Wiiag =hj(T) =0, j=12....,12 (17)

The coil current distribution of bias currents, X control
currents, and y control currents must be redefined in

the case of single or multiple coil failures in order to
produce the same force resultants. The optimization

A vector form of 3¢ + 12 nonlinear algebraic equations

IS,

method for obtaining distribution matrices can be é w(tl) U &
applied on a heteropolar magnetic bearing including é w, (t,1 ) U &\
path reluctances. The necessary conditions for the bias e v u éu
linearization are [2], [5]; e u éu
é Ua_éua (18)
s W(t,|)=é a=éq
T'GT-M, =0 (12) e u eu
é U éu
where G =- AT eyt Dy, Wiagen (L1 )0 &g
290 Il Wz (1) EDH
é0 05 Ou é0 0 050
M, = &5 0 odm =€0 o oV Distribution matrices for a heteropolar magnetic bearing
€ u vy e u including path reluctances are obtained by solving the
g0 0 0Og €5 0 0¢ system of nonlinear algebraic equations shown in Eq.
(18). A least square iterative method (MATLAB) was
The reduced distribution matrix to be determined is; used to solve the system of nonlinear algebraic
equations, which yields multiple solutions. Various
T =[-|°b,-|:X,-|:yJ (12)  initial guess of t, and |, may be tested in order to

s T =~ _ T obtain converged solutions.
where T, —[tl,tz,...,tq] T, —[tq+l,tq+2, ...,tzq] 9
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Examples
The 8-pole heteropolar magnetic bearing used in this

andysishas g, of 0.000508 m, A of 0.000602 n?’, |,
of 0.03m, |, of 0.065m, |, of 0.021 m, and n of 50.
A, Az, and A, are assumed to be identical to A.
my of 500 is used for calculation of distribution

matrices. T for 4 adjacent poles failed (5-6-7-8" )
magnetic bearingsis;

62.94442  0.0770 - 1.25600
. _§l83753 - 01083 - 13101y
* é1.83753 0.1083 - 1.31010

©.94444 - 0077 - 1.25604

T for 2-4-6-7-8th poles failed magnetic bearing is
shown as,

.06183 0.0775 - 0.2336(
T, = % 71891 - 0.0363 0.0418 ; u
g3.06183 0.0402 - 0.24919

CONTROL DESIGN AND SIMULATIONS
Linearized Forces

The nonlinear magnetic forces with path reluctances
can be linearized about the bearing center position and
the zero control voltages by using Taylor series
expansion.

Fo» - KooX- Ko ¥+ KooV + Kyv,, (29

Fy » - KX = KoV + KppVo + Ky Ve, (20)

Position stiffnesses and voltage stiffnesses are defined
as,

2 2., 2
_ S “myAn‘y, T~
Koy =- 5Ty Uy oTp (21)
90
s 2myAn?v, _ 1.~
Ky =210, (@
9

where U =y = ﬂD ljwj = -
i w g1

Equations (19) and (20) are reduced to;

Fo» - KooX- Koy + Ko, (23)
F,» - Kx- Ko y+ Ky, (24)

The calculated position stiffnesses and  voltage
stiffnesses are shownin Table 1.
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TABLE 1 The Caculated Stiffnesses

T, Ts

prx (N/m) -1221422 -580702
pry (N/m) 0 -183119
prx (N/m) 0 -183119
pry (N/m) 46624 -214463
K, (N/V) 5 109

Vi, v) 5 1.09

Control Law

The simple PD control with low pass filters are used to
design the closed loop system for unfailed bearings.
The same closed loop stiffnesses and dampings may be
maintained before and after coil failure if control gains
are switched to appropriate values. The decoupled
linearized forces for an unfailed bearing are;

FN=- Nio+ Ky Mg M (25)

J v | C

N _
_'kpi Vg - Kqg

N.. Ul
where Vg i Vg Vg =X

The parameter x is the sensor sensitivity. In general,

the linearized forces for the failed bearing have
undesirable cross-coupled position stiffnesses, and the
direct position stiffnesses along the X and y axes are
usually not symmetric. Cross feedback control forces
are added in the linearized force equations of the failed
bearing in order to cancel out the cross coupled position
stiffnesses. The linearized forces for the failed bearing
are;

Fo=- Ko X- Ko Ty + Ky, (v +9,) (26)
F=- Ky x- K, ly+K, (v, +0,) @)
where VqF=-k»FSj-kde\'/sj

= - Kok Voo Vo = - Kok, vy,

The necessary conditions for the same closed loop
stiffnesses and dampings before and after failure are;

F'=F", F"=Ff (28)

This yields control gains for the failed bearing

operation;
F N N N
K F = - prx + prx + XK kpx (29)
pX F
XK
F N N N
K F = Koy + Koy +XKyy Ky (30)
Py XKWyF
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e KON and after failure. Transient response of the flux densities
K = KWF Kax (31)  in Beaing A is shown in Fig. 4 The adjusted
. distribution matrix of T, yields the required inactive
kdyF = KLkd N (32 pole fluxes so that the bearing has the necessary forces
KvyyF Y to maintain stability. The load capacity is considerably

reduced though in the failed bearing.

The cross feedback gains to eliminate the cross-coupled
position stiffnesses are; ©

F
ke =- By (33) 1
XKy K 0
F
k.,.=- —K PyX (34 1r
v ke Fk F
px wy 2L

Simulations

Fault tolerant control system of a horizontal rigid rotor
supported on magnetic bearings is constructed. A
symmetric horizontal rigid rotor has mass of 10.7 kg, 5|
polar moment of inertia of 0.008 kgm? transverse
moment of inertia about the mass centor of 0.36 kgm?,

displacement(m)

and bearing locations of 0.22 m on each side of the al
mass center. Unbalances of eccentricity of 2.5 E-6 are
applied on two bearing locations with a relative phase 8 ‘ : : ‘ ‘ ; ‘ : ‘

. . 5 -4 3 2 -1 0 1 2 3 4 5
angle 90°. The sensor sensitivity z is 7874 V/m. The displacement(m)
power amplifier gain K is 1 Amp/Volt. The control
law was designed with smple PD control and low pass
filters.

The following system dynamics simulation illustrates
the transient response of a rotor supported by magnetic
bearings during a coil failure event. A distribution current 4 current 3 current 2

matrix of T, is used to distribute currents to the 10 | | 10 10
unfailed bearings. The parameters Kp Ky, and v, 0 | 0 I 0
with T, a a =0.1181(m, =500) for unfailed 10 10 IU 10 |

bearings are —1152000 N/m, 116.78 N/Volt, and 5.836 0
respectively. The designed PD control gains k  and k,

for the unfailed bearings are 10 and 0.03 respectively. A 10 10

new distribution matrix and control gains should be 0 0

provided to produce desired force resultants when some
coils in a magnetic bearing fail suddenly. The transient
response from normal operation to fault-tolerant 0 cubhig 02 current 7 0 cubhig 02
control with 5-6-7-8th coils failed for both bearings was
simulated for nonlinear bearings with path reluctances 10 10 10

at 10,000 RPM. The distribution matrix of T, was

switched to T, when 4 adjacent coils failed at 0.1 10 10 10
k

second. The PD control gains k, .k, . ad k; for the 0 o1 02 o o1 02 o 0ol o2

failed bearings were adjusted as 235.3, 205.5 and 0.7 time(sec) time(sec) time(sec)
respectively. Transient response of the orbit at bearing  FIGURE 3 Current Inputs for Normal Operation to the
A is shown in Fig. 2. Transient response of the current 5678 Poles Failed Operation

inputs to bearing A for the 5-6-7-8" poles failed case is

shown in Fig. 3. This shows that large currents are

required to maintain similar dynamic properties before

FIGURE 2 Orbit Plot for Normal Operation to the 5-6-
7-8" Poles Failed Operation

|
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FIGURE 4 Fux Densities for Normal Operation to the
5-6-7-8" Poles Failed Operation

CONCLUSIONS

Material path reluctances are usualy neglected for the
calculation of fluxes and magnetic forces, however,
they may significantly influence fluxes and magnetic
forces for a large magnetic bearing or a magnetic
bearing with low relative permeability. Therefore,
material path reluctances should be included in the
caculation of distribution matrices for fault-tolerant
control.

A Lagrange Multiplier optimization method is used to
determine distribution matrices for the magnetic bearing
including large path reluctances. A cost function is
defined in a manner that represents load capacity in a
specific direction. The distribution matrices are
caculated up to certain combination of 5 poles failed
out of 8 poles. Nondimensional form of the position
stiffnesses and voltage stiffnesses are calculated for the
fault-tolerant magnetic bearings.

Control gains are determined based on the conditions
that the closed loop dynamic properties of a failed
magnetic bearing should be the same as those of an
unfailed magnetic bearing. Orbits after failure can be
maintained close to the orbit before failure if
appropriate control gains are selected after falure to
maintain the same closed loop dynamic properties.
Relatively large increase in currents and flux densities
may be required to maintain the same closed loop
dynamic properties after failure. Therefore, disturbance
levels from imbalance, runout or sideloads should be
maintained at low levels for success of this approach.
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