
NON-LINEAR BEHAVIOR OF
A MAGNETICALLY SUPPORTED ROTOR

J. C. Ji and A. Y. T. Leung
Department of Building and Construction, City University of Hong Kong

Kowloon, Hong Kong, P R China
E-mail: jchji2@hotmail.com, andrew.leung@cityu.edu.hk

ABSTRACT
Non-linearity is an inherent and essential
characteristic of active magnetic bearings. For
simplicity, only the non-linearity between force,
current and displacement of the electromagnets is
considered while other nonlinearities are neglected.
The nonlinear response of a rotor in active
magnetic bearings is investigated for the case of a
primary resonance. The method of multiple scales
is used to obtain four first-order ordinary
differential equations that describe the modulation
of the amplitudes and phases of oscillations in the
horizontal and vertical directions. The steady state
response and its stability are obtained numerically
from the reduced equations. In the regime of
multiple coexisting solutions, two stable solutions
are found. Finally, the analytical results are verified
by integrating the governing equations.

1. INTRODUCTION
Most of the components of AMBs are non-linear,
therefore the entire system becomes inherently
non-linear [1]. In simulations of the dynamic
behavior of magnetically suspended rotors, usually
the components are modeled linearly with the non-
linearities neglected for simplicity. However, the
non-linear properties of AMBs can lead to a
different behavior of the rotor system than
predicted by a linear model. The nonlinear
response of rotor-active magnetic bearing systems
has been studied by a number of people [2-6].
In this paper, only the dominant non-linearity
between force, current and displacement of the
electromagnets is considered while other
nonlinearities are neglected. The independent axis
control strategy is used to control the vibration of
the rotor, and the PD control is used for the

feedback control system. Further for simplicity, the
rotor is assumed to be a rigid body in AMBs. Thus
the model consists of one mass with two degree-of-
freedom in the x and y directions. The fundamental
resonance of the system is examined by using a
perturbation method.

2. ROTOR–AMB SYSTEM MODEL
An AMB is shown schematically in Figure 1. The
stator has eight pole pairs. For simplicity, the
saturation and the hysteresis of the magnetic core
material, the eddy current loss, and all other
secondary effects are neglected. All magnets are
assumed to have identical structure and the same
number of windings.

FIGURE 1: Schematic for modeling magnetic
forces acting on the rotor.
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According to the electromagnetic theory, the
electromagnetic force if  produced by every pair of
electromagnets can be expressed as [7]
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where 0µ  is the permeability, A is the effective
area of the cross section of one electromagnet, N is
the number of winds around the core, iI  is the coil
current that is equal to the sum of the bias current
of the electromagnet and the control current, iδ  is
the radial clearance between the stator and the
rotor, and ϕ  is the corresponding half angle of the
radial electromagnetic circuit, respectively.
For an AMB, when the rotor deviation from the
center of the bearings is x and y, the radial
clearance between the electromagnets and the rotor
can be written as
    ααδ cossin0 yxci "±= , 5,1=i
    ααδ cossin0 yxci ±±= , 8,4=i
    ααδ sincos0 yxci "±= , 6,2=i
    ααδ sincos0 yxci ±±= , 7,3=i (2)
where 0c  is the steady state air gap and α  is the
corresponding angle of a radial electromagnetic
circuit.
The pre-magnetization current 0I  is usually sent
through all coils, and the control currents are
superimposed on the pre-magnetization current.
Thus currents flowing in the coils are given by
  yiIII −== 081 ,

  yiIII +== 054 ,
  xiIII −== 076 ,

  xiIII +== 032 , (3)
The magnetic force acting on the rotor in each
direction is the difference between the attractive
forces of both magnets fixed on opposite sides.
Therefore the total electromagnetic forces in the
horizontal and vertical directions can be derived as
    )4(0)()( ++= cubicflinearff xxx ,
    )4(0)()( ++= cubicflinearff yyy , (4)
where 0(4) denotes the terms of order greater than
four. Here, for the sake of brevity, the simple
notations )(linearf x  and )(linearf y  are used to

denote the linear terms, and )(cubicf x  and
)(cubicf y  represent the cubic nonlinear terms,

respectively.
For magnetically suspended rotors various control
techniques have been used to achieve various aims.
However in this article, only the current PD control
is considered
    xkxki dpx #+= ,
    ykyki dpy #+= , (5)
where pk  and dk  are the proportional and
derivative gains respectively, and the controllers’
PD gains for all eight pole–pairs are taken to be
same.
As the focus of the work is on the effect of non-
linearity of AMBs on the nonlinear response of a
rotor, the rotor is assumed to be a rigid body in
AMBs for simplicity. Thus the model consists of
one mass with two degree-of-freedom. The non-
dimensional equations of motion governing the
unbalance of the rotor can be derived as
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where Ω,,ωµ , f and the coefficients of the nonlinear terms iα  are defined in Appendix A. The rotor weight
is neglected in the present analysis. The closed form of the solutions for equation (6) cannot be found.
Hence, approximate solutions are sought by using the method of multiple scales (MMS) [8].

3. PERTURBATION ANALYSIS BY USING MMS
The MMS [8] is employed to obtain four first order amplitude– and phase–modulated equations. To achieve
this, the small dimensionless parameter ε  is introduced as a book-keeping device to indicate the smallness
of damping (derivative gain), non-linearities and excitation (unbalance). Assuming the amplitude of motion
is small, equation (6) can be expressed as
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where 1<<ε , xx 2
1

ε= , yy 2
1

ε= , 1−= εµµ , 2
1

22 −= εε ff . Here, for the sake of brevity, the superscripts
“bar” have been omitted.
To study its fundamental resonance, the external detuning parameter σ  is introduced as εσω +Ω= 22 .

24 MODELING AND IDENTIFICATION



According to the MMS, an approximation to the solution of equation (7) can be expanded in the form
      !++= ),(),();( 101100 TTxTTxtx εε ,
      !++= ),(),();( 101100 TTyTTyty εε , (8)
where tT =0 , !tT ε=1 are different time scales.
Following the procedures of the MMS, the so–called solvability conditions for the first-order are derived as
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where the prime denotes differentiation with respect to T1. Introducing the polar transformation

             )exp(
2
1

nnn iaA β= , )exp(
2
1

nnn iaA β−= , n=1, 2. (10)

where na  and nβ  are real functions of time, substituting equation (10) into equation (9) and separating the
real and imaginary parts, the following equations for na  and nβ  are obtained

  φφµ 2cos2sin 2
213

3
12

2
21111 aababaabaa +++−=′ 11

2
214 sin βfaab −+

  2
216

3
151111 aababaa −−=′ σβ φ2cos2

211 aab− 11
2
213 cos2sin βφ faab −+ ,

  φφµ 2cos2sin 2
2
13

3
222

2
1122 aababaabaa ++−−=′ 212

2
14 cos βfaab −+

  2
2
16

3
252122 aababaa −−=′ σβ φ2cos2

2
11 aab− 212

2
13 sin2sin βφ faab +− , (11)

where 12 ββφ −= , the coefficients 1σ , 1f  and ib  ( i=1,6 ) are defined in Appendix B. These averaged
equations are first-order approximations of the original system (6), and describe the modulation of the
amplitudes and phases of the fundamental resonance of the system on a slow time scale. Equation (11) can
be reduced to a set of nonlinear algebraic equations by imposing the condition of stationarity, namely,

02,1 =′a  and 02,1 =′β . Then the steady-state responses are obtained from the non-linear algebraic equations
by using the Newton–Raphson method.
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FIGURE 2: Forced response curve for positive external detuning, p=1.22, d=0.005, c=0.001.
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FIGURE 3: Numerical integration: transition from an unstable steady state motion to a stable one. Under
p=1.22, d=0.005, f1=0.004. With initial conditions x(0)=0.18, y(0)=0.18 and zero initial velocities.
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(a) Amplitude modulated motions corresponding to the lower branch of Figure 2.
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(b) Amplitude modulated motions corresponding to the upper branch of Figure 2.
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(c) The orbit of the rotor.

FIGURE 4: Amplitude modulated motions under p=1.22, d=0.005, f1=0.021.

4. NUMERICAL RESULTS AND
DISCUSSION
The modal amplitudes 1a  and 2a  of the periodic
solutions as functions of the forcing amplitude 1f
are shown in Figure 2. To obtain the numerical
results, the values for the system parameters are
chosen as follows: 1=Ω , 3926991.0=α ,

001.01 =c , 22.1=p , 005.0=d . It can be seen
that the response curves of the two modal
amplitudes are similar and topologically
equivalent. There are three types of solution;
namely, 21 aa = , 21 aa > , and 21 aa < . When the
forcing amplitude is small, the system admits a
stable solution 21 aa = . This stable solution loses
its stability via saddle-node (SN) bifurcation at

003.01 =f , and a jump from this unstable steady
motion to a stable one occurs. In Figure 3, a jump
from an unstable steady motion to a stable one is
presented. The numerical simulation is with
parameters that are the same as those of Figure 2,

004.01 =f  and initial conditions x(0)=0.18,
y(0)=0.18 and zero initial velocities (corresponding
to an unstable solution). It can be seen that after
some initial transients the motion settles down to
the theoretically predicted stable steady state
response, which corresponds to the upper stable
branch of Figure 2. As 003.01 >f , a total of three
solutions exist, but only two stable branches occur.
The upper stable branch of 1a  corresponds to the
lower branch of 2a , and vise versa. As the

amplitude of excitation increases, these two stable
branches lose their stability by Hopf bifurcation
(HB) occurring at 009.01 =f  and 016.01 =f
respectively, and amplitude-modulated motions are
generated. The HB is expected to lead to amplitude
modulation of the steady state responses. Figure 4
shows the amplitude-modulated motions for

021.01 =f . It can be noted that their responses are
different. This indicates that the response is
dependent on the initial conditions.

5. CONCLUSIONS
It was shown that the non-linear properties of
AMBs can lead to phenomena that are not
described by a linear model, indicating the
importance of taking non-linearities into account. A
variety of interesting phenomena include
bifurcation, jump, sensitivity to initial conditions,
coexistence of multiple solutions, and amplitude-
modulated motion. The results obtained by the
perturbation method and numerical integration are
in good agreement. The results presented are
expected to be useful in the design of a controller
to reduce the vibration amplitude of rotor-AMB
systems.
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Appendix A
Expressions for the coefficients of equation (6)
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Appendix B
Expressions for the coefficients of equation (11)
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