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ABSTRACT 
Identification of physical parameters of unstable system 
is an important problem, for example in the design of its 
diagnostic system. In the diagnostics, there are usually 
observed trends in physical parameters changes. An 
identification method of the state-space model resulting 
from the physics laws is presented in the paper. The 
method is a modification of the OKID method [3] and it 
works exactly in the case when the sum of the input 
number and output number equals to the dimension of 
the state vector. The existing estimator is replaced by the 
deadbeat state observer, and the ARX model of the 
observer/controller is computed. This model is used to 
obtain the physical state-space model of the open-loop 
system for voltage controlled magnetic bearing. 
 
INTRODUCTION 
System identification is the process of mathematical 
model construction for a tested dynamic system based 
on its input and output data. In the past few decades, a 
great variety of system identification methods have been 
studied extensively, for example [1], [2]. The choice of 
an identification method depends on the nature of the 
system and on the identification aim. Most existing 
system identification methods apply for stable systems, 
without requiring feedback terms for identification 
purpose. However, for identification of marginally 
stable or unstable systems, feedback control is required 
to ensure the overall system stability. In many cases, a 
system, although stable, may be operated in the closed-
loop, and it is impossible to remove the existing 
feedback controller for security or production reasons. 
Also, from diagnostics point of view there is a need for 
a model of an open-loop system, since the feedback 
loop frequently compensates the changes in the physical 
parameters. Consequently, an open-loop system 
identification has to be performed on the closed-loop 
system. 

Many frequency and time domain methods have been 
formulated for the calculation of an open-loop system 
realization. In particular, a time domain method called 
Observer/Kalman Filter Identification (OKID) [3] was 
considered to design the state-space realization 
{ , , , }A B C D  of linear systems. The Eigensystem 
Realization Algorithm (ERA) [4] used in OKID was the 
first formal technique directly applied for modal 
parameter identification in the form of state-space 
matrices, where modal parameters are eigenvalues 
(frequencies and modal damping) and eigenvectors. In 
diagnostic systems, there are usually observed trends in 
changes of physical parameters (e.g., mass, resistance, 
inductance, and so on). Therefore, it is desirable to 
identify the physical (analytical) model, which results 
from the physics laws. 
The physical realization is one of the possible system 
realizations. For any dynamic system, although Markov 
system parameters are unique, the realized state-space 
model is not unique. If one needs to compare the 
identified state-space model with the analytical model, 
both models have to be in the same coordinates. In the 
literature, there have been known two special cases in 
which the physical state-space model can be obtained 
from the input/output data (Markov parameters) used in 
ERA. For example, in [5] a unique transformation 
matrix was derived to transform any realized state-space 
model to be in a form, which is usually employed for 
structural dynamic system, so that any identified system 
parameter can be compared with the corresponding one. 
This unique transformation matrix exists only when 
one-half of the states can be measured directly. If this 
condition is not satisfied, the other transformation 
matrices may exist, but they are usually not unique. In 
[6] it is assumed that there exists a full state sensor. In 
this case, the measurement matrix is an identity (or 
diagonal) matrix and the inversion of this matrix 
realization can be used as a transformation matrix to 
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transform the obtained system realization into its 
physical form. 
In the presented paper another case is considered. It is 
assumed that the sum of input and output numbers 
equals to the state vector dimension. In this case, the 
OKID method can be modified. The deadbeat observer 
is used to design the observer/controller model of the 
closed-loop system. In our case the Markov parameters 
are not calculated from the observer/controller system 
realization but the ARX model of the observer/controller 
is identified. From this model we can directly calculate 
(a) the open-loop physical system realization, (b) the 
observer gain physical realization. Such approach was 
used to obtain the physical state-space model of the 
open-loop system for voltage controlled magnetic 
bearing. By inspection of identified physical parameters 
we can diagnose the system. 
 
MODEL OF THE OPEN-LOOP SYSTEM 
To control magnetic bearing in many applications one 
uses averaged values of currents: control current 

1 2( ) / 2= −i i i , and operation point current 
1 2( ) / 2= +oi i i , where i1, i2 are currents in the opposite 

coils. In the voltage control there are usually two 
feedback loops to control these two currents. Such 
approach is not useful for diagnostics purposes, when 
we have to indicate the fault coil. Therefore we 
introduce another model. 
For the mass supported by the two opposite coils we 
have the well known equations: 
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generated by {1} and {2} opposite coils, respectively, Fz 
– external force, xo – clearance, x – mass displacement 
from the operation point, K – constants, u - voltages, R - 
coil resistances, Ls – leakage inductances, Lo – air-gap 
inductances; while indices {1), {2} indicate the proper 
coil. 
Let us linearize the above equations at the points: x=0, 
i1=io, i2=io. This leads to the state space model of the 
open loop system: 
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The above matrices are as follows: 
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or in the shorter form: 
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where: kwj are the amplifier gains, and 
2 3( ) /(2 )=sj j o ok K i x , 2( ) /(2 )=ij j o ok K i x , 2=j j oK N Aµ , 

j=1, 2. In the last expression there is: N – active coil 
number in the electromagnet, A – electomagnet pole 
cross section, and µo – magnetic permeability. Thus, the 
open loop system is a plant with two inputs and three 
outputs and set values: x=0, i1=io, i2=io. It means that 
the control errors are: xb=-x, i1b = io-i1,  i2b = io-i2. 
The main aim of the control system is to bring the rotor 
to the center of the bearing ring, where x=0. Therefore 
we should add the integral action to the controller. 
The identification of matrices Ac, Bc should facilitate 
the system diagnostics. All or part of the elements in 
matrices are linear functions of physical parameters. For 
example, identified values of v2, v3 can give an 
information about short circuits in coils and information 
about number of working coils N1, N2, identified values 
of v8, v9 can give information about amplifiers (their 
gains kw1, kw2), and so on. 
 
PHYSICAL SYSTEM REALIZATION 
Consider an nth-order, m-input, q-output continuous-
time linear model of the open-loop system resulting 
from the physics principles: 

( ) ( ) ( ) ( ) ( ),   ,= + =c cx A x B u y Cx& t t t t t  (5) 
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where Ac∈Rnxn, Bc∈Rnxm, C∈Rqxn. The state of the 
system is denoted by vector ( )x t , the control input by 

( )u t , and the output by ( )y t , x∈Rnx1, u∈Rmx1, y∈Rqx1. 
For the computer analysis or digital control purposes, 
the signals are sampled and the system (1) is discretized. 
It is assumed that the system is ideally sampled (with 
period ∆t) by A-D converter and extrapolated by zero-
order C-A converter. This leads to the following 
discrete-time state-space model: 

( ) ( ) ( ) ( ) ( )1 ,   ,+ = + =x Ax Bu y Cxk k k k k  (6) 

where the integer k is the sample indicator and: 

0
,   .

∆∆= = ∫c cA A
cA B B

tte e dτ τ  (7) 

In the case of discrete-time system, the elements of 
matrices { }A, B, C  are no longer (except of some 
special cases) any linear functions of physical 
parameters. Of course, one may convert such realized 
discrete-time system back to the continuous-time system 
{ }c cA , B , C  by relations: 

( ) 11 ln ,    .−= = −
∆c c cA A B A I A B

t
 (8) 

Therefore, the matrices { }A, B, C  from Eqs. (6) can be 
also called a discrete-time physical realization of the 
system. 
For zero initial conditions the solution of Eqs. (6) for 
output ( )y k , in terms of inputs ( )u i , is in the form: 

( ) ( )
1

,
=

= −∑y Yu
s

i
i

k k i  (9) 

where: 1−=Y CA Bi
i , 1,  2,  3,...=i  are known as system 

Markov parameters, and s is sufficiently large. The 
Markov parameters are elements of Hankel matrices, 
which are used in ERA to calculate the system 
realization { ,  ,  }A B C% %% . Since the Markov parameters 
sequence is simply the pulse response of the system, 
they must be unique for a given system. This may be 
shown by noting that any coordinate transformation of 
the state vector, say ( ) ( )=x Tzk k , which leads to the 
state-space model of the system in new coordinates: 

( ) ( ) ( ) ( ) ( )1 ,   ,+ = + =z Az Bu y Cz% %%k k k k k  (10) 

with matrices: 
1 1,   ,   − −= = =A T AT B T B C CT% %% , (11) 

yields the same Markov parameters: 

( ) 11 1 1 1 ,

 1, 2, 3, ...

−− − − −= = =

=

Y CA B CT T AT T B CA B% % % ii i
i

i
 (12) 

There are an infinite number of coordinate 
transformation matrices T that produce the same 
Markov parameters. Therefore, the ERA gives one the 
infinite number of system realizations { ,  ,  }A B C% %% . It is 
evident that to obtain the physical realization { }A, B, C  
one should find the proper transformation matrix T. 
Then, according to Eq. (11), the physical realization can 
be obtained using relations: 

1 1,   ,   − −= = =A TAT B TB C CT% %% . (13) 

It can be noticed that there are two cases where the 
proper transformation matrix T can be obtained in a 
simple way. One, when the state is completely 
controlled (B is square, nonsingular, and known), i.e.: 

1−=T BB% , (14) 

or the second one, when the state is completely 
measured (i.e., C is square, nonsingular and known), 
then: 

1−=T C C% . (15) 

In dynamic systems the complete state can be estimated 
by the full-order state observer, Kalman filter, or neural 
network. If the true measurement matrix C is known, 
then the transformation matrix T can be calculated 
based on Eq. (15). Because this matrix can be used only 
for perfectly known model of the system, therefore, in 
the next section it will be presented another approach 
using which one can obtain known, square, nonsingular 
matrices C or/and B. 
 
SYSTEM WITH STATE FEEDBACK 
CONTROLLER 
We assume a full state feedback controller with a gain 
matrix F, F∈Rmxn. The full state is measured or 
estimated by a state observer or Kalman filter. As it is 
seen in Fig.1 the control signal ( )u k  is a summation of 
persistent (usually pseudo-random) excitation 
signal ( )r k  and feedback signal ( )fu k . Thus, the 
input signal ( )u k  and the control law ( )fu k  are in the 
form: 

( ) ( ) ( ) ( ) ( )ˆ,    .= + = −f fu u r u Fxk k k k k  (16) 

In the OKID method [3] the controller gain and the 
open-loop system dynamics are assumed to be 
unknown. The closed-loop system is excited by a 
known (measured) excitation signal ( )r k , and the 
closed-loop system response ( )y k  (not ˆ ( )y k ) and the 
feedback control signal ( )fu k  are measured. The input 
signal ( )u k  can also be considered as a known one, 
based on the first equation of (16). It follows from the 
control scheme in Fig.1, where dynamics of an observer 
is described by equations: 
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where G is an observer gain. 
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FIGURE 1: Identified (effective) control system 

with state feedback controller 

Combining Eqs. (17) and Eqs. (16) yields the state 
space model for the system in Fig.1 in the following 
form: 
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where:   = +A A GC ,  [ ]= −B B G ,  
 
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C
C

F
. 

When the existing observer is asymptotically stable then 
it can be assumed that after some steps, for example s 
steps, one has ( ) ( )ˆ ≅x xk k , ( ) ( )ˆ ≅y yk k . After s steps 
(from comparison of Eqs. (6) and Eqs. (17)) the 
input/output relations can be expressed in terms of finite 
numbers of the Markov parameters Yi  of the effective 
observer/controller system described by Eqs. (18) as: 
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and p is a number of identified observer/controller 
Markov parameters. 
 
IDENTIFICATION PROCEDURE 
Consider the case when the existing observer is 
asymptotically stable, so that for some sufficiently 
large s, ≈Y 0i  for all time steps i≥s. This means that 
( ) ( )= + ≈A A GC 0i i  for i≥s. The matrix G can be 
manipulated to reduce the number of identified 

observer/controller Markov parameters, and one can 
replace the existing state estimator with a gain matrix G, 
G∈Rnxq, by the deadbeat observer with gain matrix Gd, 
Gd∈Rnxq, which converges after p steps and >s p . The 
input-output description of the system, see Eq. (19), for 
l data samples, after the existing observer has converged 
in s time steps, becomes: 

,=y YV  (20) 

where: 1  ,− =  d d d d dY CB CA B CA BK p  
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for  >s p , and matrices ,  d dA B  are described by 
formula below Eqs. (18) with matrix G replaced by 
matrix Gd. The least-squares solution of the above 
equation leads to the following observer/controller 
Markov parameters: 

1−
 =  Y yV VVT T . (21) 

From the observer/controller Markov parameters, one 
design the Hankel matrices to implement the ERA 
algorithm. As a result of ERA, we have the 
observer/controller realization { , , }d dA B C% %% . 
Using Eqs. (13) and Eqs. (18) we have: 

[ ]

1

1
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  ,   .

−

−

= + =

 
= − = = = − 

d d d

d d
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C

B B G TB C CT
F

%
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Case I. Let C is known and nonsingular. It means that 
C and F are known and C  is square and nonsingular. In 
this case the transformation matrix has the form: 

−= 1T CC% . (23) 

According to Eqs. (22) the physical matrices of the 
open-loop system are calculated from formula: 

[ ] 1,    .−− = = −d d d dB G TB A TA T G C%%  (24) 

 
Case II. Let B  is known and nonsingular. It means that 
B and Gd are known and dB  is square and nonsingular. 
In this case the transformation matrix has the form: 

1−= d dT B B% . (25) 
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According to Eqs. (22) the physical matrices of the 
open-loop system are calculated from formula: 

1 1,   .− − 
= − = − 

d d

C
A TA T G C CT

F
% %  (26) 

In the diagnostic systems, one usually starts with a good 
defined “nominal” model of the diagnosed system. 
Unfortunately, the matrix Gd changes with moving 
system from its nominal parameters. Therefore, the 
Case II cannot be considered for a diagnostic purpose. It 
means that sensor diagnostics should be carried out in 
another way. 
 
ARX MODEL IDENTIFICATION 
Observer/controller Markov parameters can be 
calculated from ARX model parameters of the 
observer/controller system (18). The ARX model is in 
the form: 

1 1
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i i
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where: ia , ib  are ARX model parameters. Stacking up 
Eq. (27) for different k, one can form a matrix equation: 
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Exciting the closed-loop system by known (measured) 
signal ( )r k  and measuring the output ( )y k and 
control ( )fu k  signals, make possible for one to 
calculate the ARX model parameters through batch 
least-squares method: 

1( ) ( ) ( 1)[ ( 1) ( 1)]−= − − −v v v vP y V V VT Tk k k k k . (29) 

Using Z-transform to Eq. (19), separating 
signals ( ),  ( )y vu z z , and applying long division, gives: 

( )
( )

1 2
1 2 1 1

3
3 1 2 1 1 2 1

( ) {

         } ( ).

− −

−

= + + +

+ + + + +  

uy b b a b

b a b a b a b vK

z z z

z z
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Based on the above equation and the Z-transform of 
Eq. (19), the observer/controller Markov parameters can 

be recursively calculated from the estimated ARX 
model parameters: 

1
−

=

= +∑Y b a Y
k

k k i k i
i

. (31) 

Now, the ARX model will be calculated from the 
observer/controller state-space model (18). In 
considered case, the matrix C  is square and 
nonsingular. It means, that the state vector can be 
calculated directly from the output: 

1−=x C y . (32) 

Multiplying from the left the first equation of (18) by 
matrix C , and inserting Eq. (32), yields: 

( ) ( )11 ( )−+ = +u d uy CA C y CBvk k k . (33) 

The comparison of Eq. (27) with Eq. (33) leads to 
simple formula: 

1
1

−= da CA C , (34) 

1 = db CB , (35) 

and p=1. From Eq. (31) it can be concluded that there is 
only one observer/controller Markov parameter that has 
the matrix form: 

1 1= = dY b CB . (36) 

Note, that Hankel matrix H(1) needs at least 
nonzero 2Y . Therefore, it can not be calculated and one 
can not obtain the realization of the matrix A in the way 
described in the previous section. Fortunately, for a 
known matrix C  the physical matrices can be 
calculated immediately from Eqs. (34) and (35), i.e., 

1
1

−= + =d dA A G C C a C , (37) 

[ ] 1
1

−= − =d dB B G C b . (38) 

 
CONTROLLER WITH INTEGRAL PART 
Often, we need the steady-state error of chosen system 
outputs to be equal null. When the closed-loop system is 
static, then we should add an integral part to the 
controller. It leads to the new state variables: 

( )( 1) ( 1)+ = − +e e Eyk k k , (39) 

where the matrix E is designed of the identity matrix 
rows. Number and indices of rows are equivalent to 
number and indices of these system outputs which the 
steady-state error should be nullified. Introducing Eqs. 
(6) to Eq. (39) one obtains: 

( )( 1) ( ) ( )+ = − −e e ECAx ECBuk k k k . (40) 
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Joining Eq. (40) and Eqs. (6) results in extended model 
of the open loop system: 
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The control law (16) this time is in the following form: 
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A schematic diagram of the closed-loop system is 
shown in Fig.2, and is useful to control law (42) design. 
To design the state observer (17) we now use Eq. (39) 
and Eqs.(6). The state observer  has the following form: 

[ ]

[ ]

ˆ ˆ( 1) ( )
ˆ ˆ( 1) ( )

             ( ) ( ) ( 1),

ˆ ( )
ˆ ( ) .

ˆ( )

k k
k k

k k k

k
k

k

+         
= +        +        
     

+ − − +     
     

 
=  

 

x A 0 G x
C 0

e 0 I 0 e

B G 0
u y y

0 0 E
x

y C 0
e

 (43) 

One can notice that for the same plant, the above 
matrices F and G have the same dimension as 
respective matrices from Eqs. (16) and Eqs. (17), but 
their elements can be quite different.  
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FIGURE 2: Identified control system with state 

feedback controller with integral part 

Omitting transient period one can immediately obtain 
from the Eqs. (43) and Eq. (42) the observer/controller 
model in the state space: 

( 1) ( )
( 1) ( )

( ) ( 1)
         ,

( ) ( 1)

( ) ( )
.

( ) ( )

k k
k k

k k
k k

k k
k k

+  +      
= +      +      

− +       
+ +       − +       

    
=     −     

d

d

ef

x A G C 0 x
e 0 I e

B G u 0 0 u
0 0 y 0 E y

C 0y x
F Fu e

 (44) 

One can describe this model in shorter form by 
combining Eqs. (44) and Eqs. (18): 

( 1) ( )
( ) ( 1),

( 1) ( )

( )
( ) ,

( )

k k
k k

k k

k
k

k

 +         = + + +          +        
  =     

dd

u

x x 0BA 0
v v

e e E00 I

x
y C C

e

%

%

 (45) 

where ,d dA  B  are given by formula (37), (38) and: 

[ ]= −E 0 E% ,  
 

=  − e

0
C

F
% . 

We can find an exact or approximated ARX model of 
the observer/controller. The exact model is in the case 
when the sum of input number and output number 
equals to the state vector dimension. 
In this case from the second of Eqs. (45), one can 
calculate the state vector: 

1( )
( ).

( )
−   =    

u

x
C C y

e
%k

k
k

 (46) 

Multiplying the first of Eqs (45) from the left side by 
[ ]C C%  and introducing the above equation, one 
obtains the exact ARX model of the observer/controller: 

1 1( 1) ( ) ( 1) ( )ok k k k+ = + + +u uy a y b v b v , (47) 

where ARX model parameters are expressed by state 
space matrices: 

1

1 ,

,   .o

− 
   =     

 
     = =         

d

d
1

A 0
a C C C C

0 I

0 B
b C C b C C

E 0

% %

% %
%

 (48) 

From above equations we have immediately: 

1

1

1

,

.

−

−

 
   =     

 
 

 =   
 

d

d
1

A 0
C C a C C

0 I

B
C C b

0

% %

%

 (49) 

By proper partition of the left sides in the above 
equations: 
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−

     =      
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1
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L L
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C C b
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% %

%

 (50) 

and comparing the Eqs. (49) and Eqs. (50) one obtains 
the open loop system and observer gain matrices: 

11

12

11

=
= −

= −
d

d

B M
G M
A L G C

 (51) 

As it was mentioned earlier in the presented method, it 
was assumed that measurement matrix C and controller 
gain matrix F are known and their values are constant 
during system operation. 
 
COMPUTER SYMULATION 
We assumed that the rotor and magnetic bearings have 
got the following nominal parameters: 
m=1.8 [kg], io=0.5 [A], xo=3.5⋅10-4 [m], R1=R2=17.5 [Ω], 

ks1=ks2=7⋅105 [N/m], ki1=ki2=4.9⋅102 [A/m], kw1=kw2=1, 

Ls1=Ls2=0.086[mH], Lo1=Lo2=0.343 [mH]. 

The nominal matrices of the open-loop system are: 

0 1 0 0
777547.06 0 272.14 -272.14

0 -1142.12 -40.80 0
0 1142.12 0 40.80

 
 
 =
 
 
  

CA , 

0 0
0 0

2.3316 0
0 2.3316

 
 
 =
 
 
  

CB . 

For this model, we designed the actual observer and 
controller with integral part. The same actual observer 
gain and controller gain are used in all examples. 
 
Example I. Identification of nominal model. After the 
identification procedure of the model with nominal 
parameters we obtain the following matrices: 

-0.20 0.99 -0.00 0.00
777360.39 -0.21 272.11 -272.12

593.28 -1141.43 -40.70 -0.05
2821.75 1145.41 0.44 -41.06

 
 
 =
 
 
  

CeA , 

-0.0000 0.0000
-0.0000 0.0000
2.3316 -0.0000
0.0001 2.3314

 
 
 =
 
 
  

CeB . 

To evaluate the accuracy of the identification procedure 
the matrix percentage indexes are introduced with array 
division: 

100%⋅Ce C
p

C

A - AA =
A

, 

100%⋅Ce C
p

C

B - BB =
B

. 

In this example one obtains: 

-0.0241
-0.0240 -0.0110 -0.0063

-0.0607 -0.2315
0.2886 0.6343

× × × 
 × =
 × ×
 × ×  

pA , 

0.0005
-0.0076

× × 
 × × =
 ×
 ×  

pB . 

By inspection of elements vi, i=1,…,9, in above 
matrices we can notice that the biggest identification 
error does not cross 0.64%. The impulse response of 
mass displacement for the open-loop system is 
presented in Fig.3, while – for the closed-loop system - 
in Fig.4. In both figures there are given the 
displacement for simulated model and for identified 
model. They cover each other with high accuracy. 
Therefore, they are seen as a single line. The answer of 
the open-loop system (Fig.3) is typical for an unstable 
system.  
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FIGURE 3: Impulse response of mass displacement 

for the simulated and identified open-loop system 
 
Example II. We assume 20% increase of the resistance 
R1 in the first coil over nominal value. It changes 
element v5 in the state matrix. In this case, the matrix 
percentage index is: 
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-0.0241
-0.0240 -0.0109 -0.0063

-0.0596 19.7729
0.2872 0.6322

× × × 
 × =
 × ×
 × ×  

pA . 

We can see that the element v5 in the identified state 
matrix increased about 20% while the changes of other 
elements are below 0.64%. 
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FIGURE 4: Impulse response of mass displacement 
for the simulated and identified closed-loop system 

 
Example III. We assume 20% increase of the amplifier 
gain kw1 over nominal value. It changes element v8 in the 
input matrix. In this case, the matrix percentage index 
is: 

20.0005
-0.0075

× × 
 × × =
 ×
 ×  

pB . 

We can notice that the element v8 in the identified input 
matrix increased about 20% while the percentage 
change of element v9 is very small. 
 
CONCLUSIONS 
The identification method of the open-loop state-space 
model resulting from the physics laws is presented in 
this paper. We assumed that the sum of the input 
number and output number equals to the state vector 
dimension. In this case, there exists a simple solution of 
considered problem. At first, there was designed 
observer/controller system of which ARX model was 
identified. Open-loop physical state-space model 
(matrices: A, B) and observer gain are calculated from 
ARX model parameters.  
One should notice that for the main part of systems, the 
elements of matrices A, B are simpler expressions than 
coefficients in transfer function. Therefore, the true 

physical parameters are often easy calculated from the 
identified elements of state-space model’s matrices 
Thus, this method can be used in the diagnostics 
systems. 
For the diagnostics purposes, we should use the model 
of magnetic bearing, which is presented in the paper. In 
the model, we avoided averaged values of the current 
and voltage in the opposite electromagnet coils, which 
lead to averaged parameters in the identified matrices of 
the state-space model. 
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