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ABSTRACT
The servo feedback system of the active magnetic
bearing (AMB) is commonly regulated by the PID
control law. This law results in a very simple design.
However it still contains several problems for the
tuning of the control unit. In order to compensate for
the insufficiency of the PID controller, a notch filter
and a zero−pole canceling filter(z−p filter) are
successfully introduced for tuning and stabilizing the
high frequency vibration in our simulation and
experiment. The stability margin of high frequency
modes is increased by using these filters. For the
stability evaluation, a new Nyquist plot on the log
scale chart is introduced in this paper. The Nyquist plot
provides the analysis of the global behavior of the
locus of all eigen modes. The case study of the stability
margin is presented concerning two rotors of the "long"
and "flat" types, and the effective usage is
demonstrated with respect to the new Nyquist plot.

1. INTRODUCTION
Active magnetic bearings(AMB) support a rotor
without mechanical contact. The bearing force
levitating the rotor is generated by electro−magnets, so
that the AMB’s force is controlled by a servo feedback
control law. e.g., the PID control. More specifically
this AMB force is controlled by the transfer function of
the control loop from the sensor to the magnetic force.
The stablity of the AMB control system is evaluated by
two parts; damping ratio of critical speeds within the
operational speed range and stability margin of high
frequency eigen modes over the operational speed
range. The former is called Q−value evaluation which
is already established by ISO10814. The latter is called
high frequency mode instability which is discussed in

this paper. The stability margin of the usual control
theory is well studied as the gain and phase margin, but
it is applicable only to simple rotors having low natural
frequencies. Our investigation is to evaluate the
stability margin of high frequency bending modes,
called spill over instability.
This spill over instability is mainly caused by the phase
lag of the controllers. The controllers phase lag is
equivalent to the negative damping of mechanical
systems. For the evaluation of this stability margin, we
have to estimate the balance between the material
positive damping of the rotor and the controller
negative damping. One of the means to measure the
stability margin is to directly increase the total gain of
the controller. Another means is to make the
comparison of both Q−factors between the open and
closed loop responses. The Nyquist plot and the
sensitivity function also provide good information on
the stability margin. 
We provide experimental data for our two test rotors; a
flexible long rotor and a flat rotor like as a flywheel. In
our levitation tests, we experienced the unstable
vibrations corresponding to the high frequency eigen
modes due to the flexibility of the long shaft and the
thin flywheel disc. These unstable vibrations cannot be
completely eliminated.
The reduced models of these rotor systems, equipped
with AMBs, are first introduced for our numerical
simulation. A typical example of the controller transfer
function is prepared for the simulation. The transfer
function of the global system, which combines the
rotor model and the PID controller is examined in
order to evaluate the stability margin. The stability
margin is evaluated by several methods mentioned
above.
In order to compensate for this insufficiency of the PID
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controller, a notch filter and a zero−pole canceling
filter(z−p filter) are successfully introduced for tuning
and stabilizing the high frequency vibration in our
simulation and experiment. For the stability evaluation,
a new Nyquist plot on the log scale chart is introduced.
This paper refers to it as the "dB" Nyquist Plot. The
Nyquist plot is usually described in the linear chart, so
that the overview of the plot locus will be easily
outside the measurement range. However, the usage of
this "dB" Nyquist Plot provides the analysis of the
global behavior of the locus of all eigen modes.
According to this new "dB" Nyquist Plot, we can
retune the stability of the "long" and "flat" rotors
prepared in our test. The usefulness of the stability
evaluation method is proved by the tests with and
without the z−p filter.
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FIGURE 1: Structure of Rotor Model

 FIGURE 2 : Critical Speed Map of "Long" Rotor

2.  "LONG " ROTOR AND "FLAT" ROTOR
2.1 Description of the Flexible "Long" Rotor
Figure 1 shows the structure of the rotor model. The
rotor has a shaft diameter of φ37, a total length of 1310
mm and a total mass of 29.8kg. The shaft, connected
by 2 AMB journals at both ends, has 3 discs placed
between the bearing span. The AMBs are arranged on
both sides with a bearing span of 1195 mm.[1]
In the rotational speed range, with a rated revolution of
350 rps, 5 resonant modes exist as shown in the critical
speed map of Fig. 2. The horizontal axis is the stiffness
of the AMB and the vertical axis is the natural
frequency. Since the stiffness is drawn on the map,

intersections indicate critical resonant speeds. As a
resonant mode, it is a flexible rotor with the rigid
modes of primary and secondary frequency(15Hz,
30Hz), and bending modes of first, second and third
orders (65Hz, 175Hz, 175Hz). 

Modeling of the "Long" Rotor: The equation of
motion of the rotors and bearings, excluding the
material damping term, can be expressed by the
following formula:

M X K X Q U 2[ ] + [ ] = +˙̇
AMB Ω (1)

where X is a rotor radial complex displacement vector,
M is a mass matrix, K is a shaft stiffness matrix, QAMB

is a controlling force, U is a vector showing unbalance
distribution of each point and Ω is a revolution speed.
The equations of motion of the flexible rotor are
formulated by the component mode synthesis.[3][4]

FIGURE 3: Schematic of "Flat" Rotor

FIGURE  4:Critical Map of the "Flat" Rotor(Standstill)

2.2 Description of the "Flat" Rotor
A schematic of the "flat" test rotor, which looks like a
flywheel, is shown in Fig 3.[2] The main
characteristics of the "flat" rotor is as follows:

Flywheel diameter : 0.6m 

Free-Free Pin-Pin
[771]
(614)

[256]

[32]

  (123)

NC1

NC2

NC3

NC4

NC5

AMB

[298]
(172)

[63]

[0.1]
(0.2)

104 105 106 107 108
1

10

100

1000

N
at

ur
al

 F
re

qu
en

cy
 [

H
z]

Bearing Stiffness [N/m]

Operating
 Rotational Speed

10

100

N
at

ur
al

 F
re

qu
en

cy
[H

z]

10
4

Bearing Stiffness [N/m]

Tilting#1

Axial#1

Axial#2

Tilting#2

AMB Stiffness

10
5 10

6 10
7

10
8

84 MODELING AND IDENTIFICATION



Rotor mass : 36kg 
Polar moment of inertia: 0.69kgm2

Max. rotational speed : 200rps
 
The critical speed map of this rotor system is shown in
Figure 4. When the stiffness of the AMB is set to
approximately 3*105 [N/m], the natural frequencies of
the rigid modes are 23Hz(Axial) and 30Hz(Tilting),
and the bending modes are 137Hz(Axial) and
170Hz(Tilting).
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FIGURE 5: Rotor Coordinate System
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FIGURE 6 : Flat Rotor Displacement Modes

Modeling of the "Flat" Rotor for Simulation : Figure
5 shows the structure of the "flat" rotor model and the
coordinate system. The center part of the shaft is
described by 5 DOF (rx, ry, θ1x, θ1y, z1). Since the
flexibility of the disc is considered, the disc mass is
divided into two parts, i.e., inner and outer parts. As
shown in (1) of Fig. 6, the axial motions are defined by
z1 of inner shaft motion and z2 of the outer part of the
disc. The vibration z2 is one nodal−circular of the disc.
As shown in (2) of Fig. 6, the declination motions are
noted by θ1 of the inner shaft motion and θ2 of the
outer plate. The vibration of θ2 is the eigen mode of
one nodal diameter of the disc. Considering the
freedom of the inner shaft and the outer part of the
disc, the corresponding equation of the motion is
expressed as follows:

Axial: 
M Z K Z Q[ ] + [ ] = −˙̇

a AMBa
  (2a)

Tilting: I I K Qd p AMBai l[ ] − [ ] + [ ] = −˙̇ ˙θ θ θθΩ   (2b)

Radial: 
M r K r Q[ ] + [ ] = −˙̇ AMBr (2c)

Where:
Z : [z1,z2]t ,the displacement in the axial direction
M : the rotor mass matrix
Ka : the stiffness matrix in the axial direction
QAMBa : the axial AMB control force matrix
Id : the tilting transverse moment of inertia
θ : [θ1,θ2]t, the complex declination angle (θx+iθy)
Ip : the polar moment of inertia of the rotor
Kθ : the tilting stiffness matrix
l : the length from geometrical center of the rotor
to geometrical center of axial AMB
r : the complex displacement(rx+iry)
K : the stiffness matrix 
QAMBr : the radial AMB control force

An equivalent mass for (z2, θ2x, θ2y,) modes is estimated
by the modal synthesis method.

3. OPEN AND CLOSED LOOP TRANSFER
FUNCTION
Figure 7 shows the feedback system of the rotor and
the controller. The open loop transfer function of the
global system Go is generally as follows:

G G Go p r=
(3)

where Gp is the transfer function of the rotor system
without the controller and Gr is the transfer function of
the controller. In this paper, the control system of Gr is
mainly prepared by the PID control. The closed loop
transfer function Gc is shown as follows:

G
G

Gc
o

o

=
+1

 (4)

GpGr

Controller Rotor
+

-

FIGURE 7: Feedback System of the Rotor and the
Controller 
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FIGURE8: Open and Closed Loop Transfer Function
of the "Long" Rotor

FIGURE 9: Open and Closed Loop Transfer Function
of "Flat" Rotor in Axial Direction

3.1 The "Long" Rotor
The characteristics of the open loop and closed loop
are examined for the "long" rotor model, considering a
total of five bending modes as shown in Fig. 5. In this
"long" rotor model, there are rigid modes, a bending
mode of the first order (65 Hz), a bending mode of the
second order (174 Hz) and a bending mode of the third
order (300 Hz) in the range of the rated revolution of
350 rps. Further more, there are bending modes with
higher frequencies over the rated speed. These higher
eigen modes are induced to be unstable.

3.2 The "Flat" Rotor
In Figure 9, the characteristics of the open loop and
closed loop are examined with respect to the "flat"
rotor model of the axial direction. In this "flat" rotor
model, there are a rigid mode and a bending mode of
the first order respectively, 23[Hz] and 137[Hz].

4. IMPROVEMENT OF HIGHER FREQUENCY
RESONANT VIBRATION 
4.1 Notch Filter and z−p Cancellation Filter
The prepared PID controller is then unable to eliminate
the instability in the high frequency domain. In order to
compensate for this insufficiency of the PID controller,
a notch filter and a zero−pole canceling filter(z−p
filter) are successfully introduced for tuning and
stabilizing the high frequency vibration in our
simulation and experiment. We add a notch filter and
zero−pole canceling filter, as shown in the following
formulas:

notch filter 

G
s

s sE
z

e z z

= +
+ +

2 2

2 22

ω
ς ω ω

(5)

z−p filter 
G

s

s sZP
z

p p p

p

z

= +
+ +

2 2

2 2

2

22

ω
ς ω ω

ω
ω (6)

where ζe and ζp are damping. ωz, and ωp are
frequencies.

4.2 Effect of the Filters
Figure10(a) shows the typical open loop transfer
function of a flexible rotor system, which includes an
unstable vibration near an eigen frequency ωf2.
Figure10 (b) is the corresponding Nyquist plot of the
system. The system is unstable, because the locus
draws the overlaping critical point (−1,0).
Figure10(c) shows the transfer function of the notch
filter. The addition of the notch filter can generate a
stabilization of the rotor system. By using the filters,
we must coinside the ωz with ωf. In this manner,
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Figure10(d) shows the transfer function of z−p the
filter. The addition of the z−p filter can generate a
stabilization of the rotor system. By using the filters,
we must coinside in ωz with ωf. Figure 10(e)(f) show
the Nyquist plots of the rotor systems, combined with
each filter. The results show that stability margin of
both systems are increased.

FIGURE 10: Effects of the Notch Filter and the z−p
Filter
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FIGURE 11: Stability of the "Flat" Rotor System

4.3 Simulation of the "Flat" Rotor Model
Figure 11 shows the effectiveness of adding the notch
filter or z−p filter:
(a) is the open loop of the plant(rotor)
(b) is the open loop of the plant plus the notch filter
(c) is the open loop of the plant plus the z−p filter
On the left side, we place Bode diagrams of these
(a),(b),(c) and on the right side, the corresponding
Nyquist diagram in the range of [110−200]Hz.
Since the locus of the open loop including these filters
in the Nyquist plot, are modified to be very far from
the critical point (−1,0), the system stability is greatly
improved.

5. THE NEW NYQUIST PLOT
For the stability evaluation, a new Nyquist plot on the
log scale chart is introduced. This paper refers to it as
the "dB" Nyquist plot. 

v G j e j= ( )( )20 log ( )ω θ ω
(7)

where G(jω) is a transfer function and θ is a phase
angle. "dB" Nyquist plot is the plot locus of v on the
complex plane. The Nyquist plot is usually described
in the linear chart, so that the overview of the plot
locus will be easily outside the measurement range.
However, the usage of this "dB" Nyquist plot provides
the analysis of the global behavior of the locus of all
eigen modes. The stability margin is given by the
distance from the critical point which is (1,0) on the
Nyquist plot. It is noted that the "dB" Nyquist plot is
equal to an actual distance on the linear Nyquist chart.
Figure 12 shows the "dB" Nyquist plot converted from
the Nyquist plot of the simulation data in Fig. 11(c’ ).
As shown in these figures, it is easy to analyze the
global behavior of the system.
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6. EXPERIMENTAL RESULT
According to this new "dB" Nyquist plot, we can retune
the stability of the "long" rotor and the "flat" rotor in
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our tests. The usefulness of the stability evaluation
method is proved by the tests with and without the z−p
filter.

6.1 the "Long" Rotor 
The test data obtained from the "long" rotor is
displayed in Fig.13. An example of the open loop bode
plot is shown in Fig.13 (1). It is measured by a usual
FFT analyzer. In this open loop gain curve, many
peaks of bending mode eigen frequencies appear. This
bode plot data is rearranged, and it is redrawn in the
"dB" Nyquist plot Fig.13 (2). The detail plot around
645Hz, selecting a part of (2), is shown in Fig. 13(3).
In the case of the additional z−p filter, the Bode plot is
measured and the corresponding "dB" Nyquist plot is
rearranged, as shown in Fig. 13(4). As the result of the
zero−pole filter(ωp=585[Hz],ωz=642[Hz]), the distance
margin is increased.
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FIGURE 13: "dB" Nyquist Plot of the "Long" Rotor

6.2 the "Flat" Rotor
The data obtained from the "flat" rotor is displayed in
Fig. 14. An example of the open loop Bode plot is
shown in Fig. 14 (1). This Bode plot data is rearranged
, and it is redrawn in the "dB" Nyquist plot Fig. 14 (2).
The detail plot around 120 [Hz], selecting a part of (2),
is shown in Fig. 14 (3). In the case of the additional z−
p filter, the Bode plot is measured and the
corresponding "dB" Nyquist plot is rearranged, as
shown in Fig. 14 (4). As the result of the z−p filter
(ωp=118[Hz], ωz=104[Hz]), the distance margin is
increased. 
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FIGURE 14: "dB" Nyquist Plot of a Flat Rotor

7. CONCLUSION
In this paper, a notch filter and a zero−pole canceling
filter(z−p filter) are introduced for tuning the
stabilization of the high frequency vibration in our
simulation and experiment. The stability margin of the
high frequency modes are increased by using these
filters. For the stability evaluation, the "dB" Nyquist
plot on the log scale chart is introduced. The Nyquist
plot provides good information for the analysis of the
global behavior of the locus of all eigen modes.
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