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ABSTRACT
A kind of flywheel energy storage device based on
magnetic levitation has been studied. A decoupling
control approach has been developed for the nonlinear
model of the flywheel energy storage device supported
by active magnetic bearings such that the unstability
brought by gyroscopic effects can be overcome. A
NdFeB high field permanent-magnet synchronous
motor/generator has been employed as the apparatus of
the energy transform, with which power is provided
from and to flywheel. To verify the performance of the
system, some simulations are employed, and results are
satisfactory. A prototype was made to experiment.

INTRODUCTION
There are many kinds of energy, such as heat energy,
light energy, electric energy and mechanical energy.
Some kinds of energy can be stored into various
batteries. Flywheel battery is a kind of energy storage
devices in which rotor kinetic energy is stored while it
rotates. It is known that the kinetic energy of a rotor
system is proportional to moment of inertia around its
rotational axis, and to square of its rotational speed.
When a flywheel rotor system is accelerated to an ultra-
high speed, the kinetic energy is able to be in the
extreme large. So electric energy can be provided to the
flywheel as it is accelerated, whereas  the flywheel can
deliver e lect r ic  energy.  In  a  f lywheel  sys tem,  a
motor/generator can be employed to provide power to
and from the flywheel. To minimize losses during the
system standby, power loading or unloading, active
magnetic bearings are  supposed to use due to their
contact free operation. Furthermore, vacuum housing is
able to reduce the friction losses. However, because of
larger  moment  of  inert ia  around rotat ional  axis
compared with around radial axis,  strongly rotor
gyroscopic effects may make the rotor u nstable . To
avoid it, the influence of gyroscopic effects has to be

considered. The main goal of this paper is the study of
the decoupling control as well as input-output
linearization for the flywheel energy storage system in
which the rotor is supported by active magnetic bearings
so that the problem brought by rotor gyroscopic effects
is overcome.

In this paper, a kind of flywheel energy storage
device based on magnetic levitation has been studied.
The system includes two active radial magnetic bearings
and a passive permanent-magnet thrust bearing. A
decoupling control approach has been developed for the
nonlinear model of the flywheel rotor supported by
active magnetic bearings. A nonlinear controller based
on dynamic feedback linearization is designed such that
the strongly coupled rotor motion is reduced to five
normalization linear subsystems including four rotor
radial displacements and the rotor speed. These linear
subsystems are completely decoupled, so they are not
influencing each other. The linearized system improves
the transient response of the system. For these linearized
subsystems, linear controllers are created. A high field
permanent-magnet synchronous motor/generator has
been employed as the apparatus of the energy transform,
with which the rotor speed of 40,000 rpm has been
gained and about 0.5kWh energy is provided from and
to flywheel. Some simulations are employed to verify
the performance of the system, and results are
satisfactory. A prototype was made to experiment.

PRINCIPLE OF THE FLYWHEEL BATTERY[1]
Fig.1 shows the configuration of the flywheel energy
storage device. The system employed two radial active
magnetic bearings and a passive thrust magnetic bearing
(PMB).  A h igh  f ie ld  NdFeB permanent -magnet
synchronous motor /generator (PMSM) is used as the
apparatus of the energy transform, with which power is
provided from and to flywheel. The AMBs make the
rotor levitate, and the PMB carries the weight of the
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FIGURE 1: Configuration of the Flywheel Battery

flywheel. When the battery is charged, electric energy
can be provided to the flywheel while it is accelerated,
whereas the flywheel can deliver electric energy.

MODELING
The dynamics of the rotor-magnetic bearing system will
be described in this section. A rotor model of two
current biased radial active magnetic bearings is
represented in Fig.2, where B1, B2 denote upper and
lower AMB, respectively. The relationship between the
magnetic force F acting on the rotor, and the coil
current i as well as rotor’s displacement e can be written
as
                               F  = ke e + k i i                                 (1)
where F = (Fx1, Fx2, Fy 1,  Fy 2)

T , e = (x 1, x2,  y 1, y2)T,  and
i = (ix1, ix2, iy1, iy2)

T.
Thus
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where (x1, y1, x2, y2) is the bearing coordinate system.
The first term of the right-hand side of (1) describes the
displacement stiffness; the second term describes the
current stiffness. In equation (2), ke is stiffness
coefficient of displacement, and k i is that of current for
the AMBs. The subscript x and y means being in x and y
directions, and 1 and 2 denote B1 and B2, respectively.
To gain an exact model of the system, Finite Element
Method (FEM) is employed to calculate these
coefficients.
Assuming that the rotor is rigid, we can write the
equations of motion in the mass center coordinate (xg, yg,
zg, ϕ, ψ) as [2]
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FIGURE 2: Rotor Model

where ωr is the rotor speed, fx and fy are disturbances
created by the unbalance of the rotor, J and I are
moments of inertia around rotation and radial axis,
respectively, Te is torque of the motor, and l1, l2 are the
distances of the upper and lower magnetic bearings. As
the control is performed in the bearing coordinate (x1, x2,
y1, y2), we have to do coordinate transformation, i.e.
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From (2)-(4), we can obtain the state representation as
follows
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where we defined ξ = T),,,,,,,,( 987654321 ξξξξξξξξξ

= T
rgggg yxyx ),,,,,,,,( ωψϕψϕ &&&&  is the state variable,

U =  (u1, u2, u3, u4, u5)
T = (ix1, ix2, iy1, iy2, Te)

T is input
variable.

DECOUPLING CONTROL
Let the outputs be the displacements of the rotor and its
speed, i.e.,
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for the control variables u1 - u5 to appear in the output
equation, it is necessary to differentiate Y, which gives
equation (7).
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and
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Let
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where the variables with subscript ref denote desired
ones.
Furthermore, let
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To linearize the system using dynamic feedback, the
input currents for AMBs and the torque for the PMSM
are set as
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After substituting (12) in (5), (7), we can obtain the
normalization linear system (13). The nonlinear
magnetic bearing system thus is transformed into five
linear decoupled subsystems without internal dynamics.
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where Φ = (ϕ1,ϕ2,ϕ3,ϕ4,ϕ5)T is new input vector for
decoupled linearization system. Decoupling control
scheme can be shown in Fig.3.

From equation (13) we can know that these subsystems,
including four radial displacements of the rotor and its
speed, are multiple-integrator form. Thus, after using
feedback linearization control, linear control system
techniques can be applied to these linear subsystems to
synthesize desired response.

FIGURE 3: Decoupling Control via Feedback
Linearization
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Next, the regulation of displacements of the rotor to
desired values is ensured via utilizing state-variable
feedback. A simple illustration of the state-variable
feedback method is depicted in Fig.4. Each of closed-
loop transfer functions of displacement’s subsystems
becomes
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=                  (14)

where y represents each displacement of AMBs, and i
does control current, respectively. They are all typical
second-order linear systems. The parameter a0 depends
on bandwidth of the system, supply voltage of the
power amplifier, and so on. The parameter a1 decides
damping factor of the system. In addition, the rotor
speed can be regulated via PI controller, which had been
published in our another paper [8].

AXIAL STABILITY
A passive thrust magnetic bearing system has designed,
in which high field permanent magnets are employed.
The magnets have the shape of a ring and are
magnetized in thrust direction. One ring is mounted on
the flywheel rotor; the other is attached to the stator (see
Fig.5). Its stiffness is about 4.25×104 N / m.

FIGURE 5: Passive Axial Magnetic Bearing

We have also studied active axial magnetic bearing
without premagnetization in a turbo molecular pump [7],
it can arrive at higher stiffness.

SIMULATION AND EXPERIMENT RESULTS
To verify the effectiveness of the proposed scheme,
some simulations are employed with simulation tool
SIMULINK in the mathematics software package
MATLAB. A prototype was made to experiment. The
PMSM in the flywheel energy storage device can arrive
at higher speed than 40,000 rpm.

Simulation
Here, we consider simulating the proposed decoupling
control scheme. Table 1 shows the mainly parameters of
the system.

TABLE 1: Data of the Flywheel System

mass of the rotor: m 7.25 kg

axial inertia momentum: J 0.21 kg m2

radial inertia momentum: I 0.032 kg m2

nominal air-gap: e 0.4 mm

factor of unbalance of rotor: ε0 1×10-6 m

power of the motor 4.2 kW

nominal speed 40,000 rpm

Fig.6 shows simulation result of step response of rotor
displacements. It can be seen that the percent overshoot
is less than 5 %.

FIGURE 6: Step Response of Displacement

As the rotation axis is not equal to the rotor’s inertial;
the disturbances can be created by the unbalance of the
rotor. It is modeled as a radial acceleration in the x-y
plane with
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Fig.7 shows x-y-plot of the rotor motion, the rotor speed
is 40,000 rpm.

FIGURE 7: Orbit of Center

FIGURE 4: Closed-loop control of displacement
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Experiment Result
A TMS320F240 fixed-point processor was used to
execute the control algorithms. Fig.8 is the block
diagram of experimental setup. Using the controller, the
flywheel energy storage device has arrived at 40,000
rpm rotation speed, and it is able to provide about 0.5
kWh usable electrical energy.  Fig.9 shows startup of
the motor.

FIGURE 9: Startup of the Motor

CONCLUSIONS AND OUTLOOK
A flywheel energy storage device is studied, which has
considered the influence of rotor’s gyroscopic effects. A
decoupling control approach is presented, which uses
dynamic feedback linearization scheme. As a result, the
potential rotor unstable brought by gyroscopic effects of
the rotor can be avoided, the system achieve better
performance.
A drawback of the decoupling control based on dynamic
feedback linearization is that the controller is very
sensitive to variation between the model and the real
  

process. So a robust controller will be studied to
overcome it. In addition, we are developing a kind of
AMBs without bias current, which combine with
permanent magnet bearing, so that energy consumption
in system may be lower.
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FIGURE 8: Experimental Configuration of DSP-based Control System
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