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ABSTRACT 
    A method for obtaining an accurate estimate 
of forces acting upon a vibrating structure is 
derived in this paper.  The method was 
developed as a means for calibrating an 
electromagnetic excitation device where the 
electromagnetic force was sought to be 
estimated. The unique features of the proposed 
method are: (a) Compensation of inertial 
effects; (b) Based on indirect measurement of 
forces and displacements in conjunction with 
an accurate dynamical model. The precise 
account of inertia and elastic effects allows us  
to model the relationship between the actuall
applied forces and various parameters affecting 
the external forces. In the case of an 
electromagnetic device those will be ai -gap, 
current and magnetic flux.  The lack of 
information in this case had lead us to a 
threefold approach where experimental data is 
combined with an analytical approach togethe
with state-of-the-art measurement-equipment 
techniques. The necessity to obtain an accurate 
account of the distribution of inertia in the 
structure necessitates a precise spatial model 
extracted by means of a scanning lase -
Doppler sensor. The analytical part involves 
the estimation of Lagrange multipliers with the 
extended principal of virtual work.   

 INTRODUCTION 
  The problem of estimating the magnitude of 
dynamically applied external forces has man
applications and is considered difficult to 
solve. The main difficulty stems from the fact 
that forces are distributed and cannot be 

measured directly. Current state-of-the art 
measurement equipment allows us to measure 
forces at discrete locations while response can 
be measured to a very fine scale (e.g. with the 
aid of laser scanning sensors). The problem of 
estimating dynamic forces from measured 
response is considered ill posed.  
 The present work attempts to  overcome the 
inherent difficulty in estimating external forces 
while taking into the account the dynamics of 
the intermediate structure and its internal 
distributed forces.  The developed expressions 
provide some insight into the problem of 
actuator calibration and the anticipated errors 
due to distributed elastic and inertia properties.     
   The interest in solving this problem has risen 
as an electro-magnetic force device needed to 
be calibrated. In the calibration process, the 
current, air-gap and magnetic flux were 
measured. At this stage the proposed procedure 
was used to estimate the forces exerted by the 
electromagnetic exciter upon a vibrating 
structure. 

MOTIVATION AND GENERAL 
DESCRIPTION OF THE PROBLEM 
    Non-contacting magnetic excitation is on e 
of the natural means to apply forces on a 
rotating media. In the current application, an 
actuator applying forces on a rotating flexible 
disc was designed.  In this case, the gap 
between the magnetic poles and the vibrating 
medium may change considerabl  and 
therefore a linearised model may lead to 
incorrect results. A horseshoe type actuator 
was used and the drawing of this device is 
depicted in figure 1. 

 
  In dynamic testing of vibration structures, 
whether rotating or non-rotating, it is important 
to control the spectral contents of the applied 
force. When rotating machines are considered, 
this requirement is even more important as a 
rotating machine may exhibit many supe - and 
sub-harmonics of an applied pure-sine force.  
The harmonics can be the result of non-linea

behaviour of the supports or due to the fact that 
the rotating device in not perfectly axi -
symmetric leading to periodic variation of the 
mass and stiffness properties (BUCHER EWINS, 
1997).  The ability to apply a pure sinusoidal 
force is thus important when one wishes to 
obtain a precise model. Such an actuator can 
be used for diagnostic purposes (see BUCHER 

AND SEIBOLD, 1998) and once more spectral 
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purity is important in this case. The ability to 
apply a pure sinusoidal force relies the abilit
to obtain a precise dynamic model as a 
function of the operating conditions, e.g. 
measurable electrical quantities (current, flux) 
and mechanical quantities, e.g. displacement or 
air-gap. 
 
 Electrodynamic equations 
  Simplified analysis of t he magnetic force, 
leads to an expression for the applied force: 
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 Where K is a constant, i  current in the coils, 
s  air gap. 
 K  is a function of the area of the poles  A, 
the number of turns  N,  the permeabilit �

0,µµ   

   The magnetic force can also be expressed as 
a function of the magnetic flux,

2
eKf φ= φ   (2)  

Where φK is a constant depending upon A and 

the permeabilit � 0,µµ  

  In reality, le akage and eddy currents would 
result  in a more complicated expression fo
the magnetic force thus a  'black-box' approach 
was taken to construct an in-situ model of the 
actuator.  For that purpose, the current, ai -gap 
and magnetic flux were measured in t he 
experimental system that is illustrated below:   
    In reality, leakage and eddy currents would 
result  in a more complicated expression fo
the magnetic force thus a  'black-box' approach 
was taken to construct an in-situ model of the 
actuator.  For that purpose, the current, ai -gap 
and magnetic flux were measured in the 
experimental system that is illustrated below:  
 
 Equations of motion of the elastic structure  
 The equations of motion are developed for the 
specific example that is shown here, bu t are 
more general in scope. In this example the 
elastic structure is modelled as a beam simpl
supported at the force gauges. 
   Due to inertia forces of the elastic structure, 
the reaction forces ( 1 R2 in figure 3) do not 
depend only on the magnetic for ces  (F1 F2 in 
figure 3). An expression relating the magnetic 
forces to the measured quantities (F1 F2 s1 s2 in 
figure 3) is developed below.  

 FOR THE 
COMPLETE SYSTEM 

relate the measured reaction forces to the 
measured quantities.  In this method, fictitious 

degrees of freedom are added at the force 
gauges and after the principal of virtual work is 
invoked these artificial degrees of freedom are 
forced to zero. Figure 4 shows the added 
fictitious DOFs - 21, aa   (degrees of freedom) 

as well as the elastic displacement of the beam. 
We assume that ),( txw  can be expressed as a 

superposition of modes: 
∑φ=
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, where 

VTL −=   and T is the kinetic energy while V 
represents the potential energy.  W - represents 
the external work performed by non -
conservative forces (BARUH, 1999). 
   The sought reactions are found in this 
approach by obtaining the equations that are 
related to the fictitious displacements and 
forcing them to zero. Mathematically we write: 
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 Using equation 4, we may write according to 
BARUH, 1999). 
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  The virtual work performed on the elastic 
beam equals: 

∑ δ+δ+δ=δ
m
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     (7) 
Substituting equations 4,6  in equation 5 and 
isolating the equations of 2,1=iai : 
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also, substituting equation 4 in equation 7 : 
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 Similarly for R2, we have 
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Finally the magnetic forces can be expressed 
as : 
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 Summary 
  Equation 10 shows that the magnetic forces 
are directly related to the force gauges 
measurements, R1 R2 but also depend on a 
weighted expression of inertia forces. 
  The estimation of the inertia forces and thei
comparison with directly computed magnetic 
forces (according to equations 1 and 2) is 
developed below. 
 Estimating the inertia distribu ion 
   A scanning laser interferometer was used to 
estimate )(xnφ in equation 3. Due to the 

nonlinear behaviour of the coupled 
electromagnet-elastic beam system, a Fourie
series was fitted to each of the temporal 
measurements and for a sinusoidal current the 

 
( )∑ ω+ωφ=

n
nnn tnBtnAxtxw sincos)(),( (12) 

At every point along the beam, this model was 
fitted as shown in figure 5. 

Figure 6 allowed us to simplify equation 12 
into

( )∑ ω+ωφ=
n

nn tnBtnAxtxw sincos)(),(  

(13) 
3.1.1  Reconstructing the generalized co-
ordinates )(tqn  in equation 3 

  As there are several displacement sensors 
)(tsi  ( that are postioned along the beam (see 

figure 1 and 3) we have redandunt information 
and the equalit  

)()(),()( 1 tqxtxwts iii φ== ,i=1,2      (14) 

leads to a least squares approximation of 
)(1 tq :  
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where 41, LL are the locations of the gap 

sensors. 
 With the parametric model of the temporal 
response (equation 13) and the measured 

)(xφ (see figure 6),  the two inertia terms in 

equation 11 can be computed and the magnetic 
forces can be reconstructed.  The reconstructed 
generalized co-ordinate is depicted in figure 7. 

COMPARISON OF THE 
MECHANICALLY RECONSTRUCTED 
MAGNETIC FORCE TO THEIR 
ELECTRICALLY COMPUTED 
COUNTERPARTS 
  Given an estimate of the magnetic force that 
is based upon mechanical parameters it is 
possible to compare the results to the 
electrically obtained ones in equations 1 and 2. 
Direct computation of equations1 and 2 with 
the measured current and flux respectivel
showed significant deviation that varied as a 
function of frequency, DC current, amplitude 
of vibration and the alternating part of the 
current.  
 It was found that equation 1 should be 
replaced by (a still rather simplified 
expression) 

β+α=τ− )()(
2

2

t
s

I
tF   (16) 

 Where τβα ,,  are the gain, offset and time 

(phase) lag (respectively). 
 
  The ability to independently estimate the 
magnetic force, allowed us to curve -fit the 
parameters of equation 16. As an illustration 
figure 8 presents the estimated phase delay.  
 
   Examining figure 6 we can notice that the 
phase (time) lag depend on several parameters, 
most notably on the AC amplitude of the 
current. The simple model in equation 1 does 
not explain this fact.   Running these tests, it 
was empirically found that the gain  α can 
be expressed as a function of frequency and the 
DC part of the current:  
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For an accurate estimation of the magnetic 
force, equation 11 was found necessary as α  
was changed by as much as 50% in the range 
of up to 200Hz. 
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  With this generalized linear model, good fit 
was obtained as illustrated in figu e 9. 

CONCLUSION AND FUTURE WORK 
  A method to obtain a precise estimate of 
magnetic forces based upon indirect 
measurements was presented. A parametric 
model of the temporal and the spatial response 
with an accurate measurement of the 
mechanical response was used to estimate the 
affect of inertia on a calibration device.   A 
brief demonstration of the proposed method to 
empirically calibrate and tune the various 
parameters of an electrical model was 
presented.  The aim of this work is to generate 
precise model of the magnetic force to allo
real-time compensation of coupling effects 
appearing in highly flexible rotating discs. The 
method is more general in scope than what was 
presented here and can be used to approach the 
difficult problem of indirect force estimation. 
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Figure 1. Elect o-magnetic actuator detail 
 
 

 

Figure 2 Photograph of the experimental 
system 
 
 
 
 

Figure 3 Coordinates of Force gauges, sensors 
(s1 s2 at L1, L4), magnetic forces (F1 F2 at L2, 
L3), and the Ractions at force gauges - R1 R2 
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Figure 4 Elastic deflection  w(x,t) and 
fictitious DOFs, 21, aa  
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Figure 5. Time histories of the measured 
current and displacements Vs. the fitted 
Fourier series. 
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Figure 6. Bottom: Measured distribution of 3 

normalized amplitude of the first 5 harmonics, 
showing a nearly identical amplitude 
distribution. 
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 Figure 7. Top: measured and fitted 
displacements. Middle: reconstructed 
generalized cord. (eq. 15). Bottom: 
reconstructed generalized acceleration. 
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Figure 8. Phase lag of the magnetic force 
relative to equation 1 under different 
conditions: Current (AD/DC), and different 
air-gaps. 
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Figure 9. Agreement of estimated (generalized 
parameter) α wit  equation 17.  
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