
ROBUST CONTROL OF A MAGNETIC BEARING SYSTEM 
USING CONSTANTLY SCALED H„ CONTROL 
Mitsuo Hirata,1* Tomohiro Ohno,2 Kenzo Nonami1 

A B S T R A C T 

In this paper, we propose a design method for a robust controller of a magnetic bearing 
system with structured time-varying uncertainties. We apply the method of constantly 
scaled control to this system. The constantly scaled controller is solved by using 
a dual iterative algorithm based on L M I constraints. Simulation results are presented to 
demonstrate the control effects. 

I N T R O D U C T I O N 

Active magnetic bearings (AMBs) have been increasingly interesting for indutrial ap­
plications such as turbo-molecular pump and machining spindle. Because it offers unique 
advantages of non-contact, elimination of lubrication, low power loss and controllability of 
the bearing dynamics characteristics. Nowadays the research works on magnetic bearing 
have been aggressively carried out, and the importance of the robust control has been 
increasing. For this reason, various attempts have been paid to the robust control for 
AMB systems. Especially, H ^ control and /u-Synthesis are well understood. In Hoo con­
trol method, we can get robust stability for the multiplicative or additive uncertainties 
only solving two Riccati equations (Zhou, Doyle & Glover 1996). But if the system has 
structural uncertainties such as physical parameter uncertainties, it yields conservative 
results. On the other hand, //-Synthesis method can treat the structured uncertainties, 
and yield less conservative performance results(Packard & J.Doyle 1993). 

In the /^-Synthesis, iterative methods such as D - K iteration or D,G-K iteration are 
used for the calculation of the controller(Balas, Doyle, Glover, Packard & Smith 1995, 
Young 1994). But in the process of the iteration, various parameter, e.g., the degree of 
D-scaling, the range and the number of the frequency points for fitting, must be given by 
the designer, and the results depend deeply on these parameters. Then it require much 
effort, much time and much trial and error. Furthermore, the order of the controller tend 
to be high, and it increases the cost of the implementation of the controller. 
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Figure 1: Flexible rotor-magnetic bearing system 

In recent years, a constantly scaled //QQ method has been developed. I t can deal with 
structured time-varying uncertainties, and the order of the controller is same as that of 
the generalized plant and usually less than that of the fj, controller. The constantly scaled 
Hoo norm is an upper-bound of //. Then it can also be used as the optimization method 
of the upper bound of f i . The optimization problem of the scaled Hoo norm is not convex, 
so it is difficult to compute the global solution. However some iterative methods have 
been developed to find a sub-optimal solution, and we can get a good solution up to the 
medium size problems(Yamashiro, Iwasaki & Hara 1996). 

In this paper, we propose a design method for the robust controller of magnetic bearing 
systems with parameter uncertainties by using constantly scaled Hoo method. The non-
linearity of the magnetic bearings are modeled as structured time-varying uncertainties. 
The unmodeled dynamics and the sensitivity performance are also take into considera­
tion. The controller is calculated by using a dual iterative algorithm based on LMI(Linear 
Matrix Inequality) constraints. We also design (i controller to compare the control perfor­
mances with the constantly scaled H ^ method. Finally, simulation results are presented 
to demonstrate the effectiveness of the proposed method. 

M O D E L I N G 

Fig.l shows the AMB system which has five degrees of freedom of a flexible rotor. 
The position of axial direction is controlled by the conventional PID controller, we only 
model the dynamics of the rotor in radial directions. For simplicity, we assume the 
following assumptions: (al) the force of attraction is proportional to the square power 
of the electric coil current and is inversely proportional to the square power of the gap 
length. (a2) the back EMF voltage which is proportional to the velocity is negligible. (a3) 
the inductance of the coil is consistent regardless of frequency or the gap length. (a4) 
there is no interaction such as gyroscopic effect between x direction and y direction in 
radial direction. (a5) we only treat the small deviation from the nominal position. 

Based on the conditions above, we analyze the model of x direction of the AMB system 
which is depicted in Fig.2. The derivation of the model of y direction is similar to the x 
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Figure 2: Model of x direction 

direction. 

DYNAMICAL MODEL OF FLEXIBLE ROTOR-MAGNETIC BEARING SYSTEM 

The dynamical model of the flexible rotor is derived by the finite element method. The 
rotor can be taken simply into account in 27 parts, and the discrete model of 56-order is 
obtained as follows: 

Mq + Kq = 0, (1) 

where q G TZ56 represents the displacement and the angle of the rotor, M G T?5 6*5 6 is 
the mass matrix and K G 72.56><56 is the stiffness matrix. The rotor is supported by the 
attractive forces which is described by pf and p r as shown in Fig.2. This gives: 

Mq + Kq = Fp, p := [p/, p r (2) 

where the scripts / and r represent the front side and the rear side of the roter respectively, 
and F G TZ 5 6 x 2 is a matrix which indicates the acting position of electro-magnet force. 

Using Taylor series expansion, the attractive force of electro-magnets at the nominal 
position can be described by the following equations. 

Pf := k r x f - g r i f - \ - 6 f ( x f , i f ) , 

pr := kT • xT - gr • ir + 8T(xT,ir), 
(3a) 
(3b) 

where i f and i r are the control current which are added to the bias current, Xf and x r 

are the displacements from the nominal positions. Furthermore, kf and k r are the force-
current factor, gf and g r are the force-displacement factor, 8f, 5r are the high-order term 
in Taylor series expansion which are taken into account in the controller design. 

S T A T E - S P A C E MODEL W I T H P A R A M E T R I C U N C E R T A I N T I E S 

MODEL REDUCTION 

As is well known, it is difficult to use the model of 56-order as the design model, we 
reduce the order of the model of the flexible rotor. Using the modal axis transformation 
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and the extraction of only n lower modes, (2) can be reduced to the following equation. 

(4) 

where 

Q. := diagf^x,... ,u;n] (ui < Wi+i), 

A := diag[2CiWi,...,2C„u;n]. 

The displacements x/ and x r can be represented by the following equation 

xf 

Xr 
(5) 

Substituting (3) and (5) into (4), the reduced model of the flexible rotor-magnetic bearing 
system can be represented as follows: 

where 

1 + Ai + ( f t 2 - FGX FT)£ = -F Gu u,, 

Gx := dmg[kf, Av], Gu := diag[gf, gr 

IT U i : = I f , tr 

Using (6), we can get the state-space model of the nominal case as follows: 

x = Ax + Bui, 

V = Cx, 

where 

A := 0 / 
A -(Q2 - FGXF

T) 

B := 
0 

—FGU 

x := i 

, C:= 

y ••= 

C< O 

yr, 

(6) 

(7) 

(8) 

(9a) 

(9b) 

(10) 

(11) 

(12) 

Here, yf and y r denote the displacement observed by the position sensor, C s is the matrix 
which represents the relation between y and £. 

LFR OF PARAMETRIC UNCERTAINTIES 

In this section, the LFR (Linear Fractional Representation) of the parametric uncer­
tainties is discussed. In general, magnetic force is a nonlinear function of the gap length 
and the coil current. Now, we represent the nonlinearity which is described by 5f or 5r in 
(3) as the LFR model. 

As the first step, we put these nonlinearity into the force-current factors, and suppose 
that kf and fcr have time-varying uncertainties. Introducing the normalized time-varying 
parameter 5i E l l , kf and k r can be represented as follows: 

kf — k f 0 + Ai5i, kr = kro + A262, (13) 
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where A i and A2 give the bound of the uncertainties. 
Using the method described in (Hirata, Liu & Mita 1996), the magnetic bearing system 

with parametric uncertainties can be represented using LFR as follows: 

y = Tu(Po,As)ui 

where PQ is a generalized plant, and Aa is diagonal matrix which is defined as 

Ag := diagf t , 62], 

T u denotes the upper linear fractional transformation (Zhou et al. 1996). 

(14) 

C O N S T A N T L Y S C A L E D P R O B L E M 

Fig.3 shows the closed-loop system with a diagonalized time-varying uncertainty A. 
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Figure 3: Closed-loop system 

In this figure, G and K denote the generalized plant and the controller respectively. <S 
is defined as the set of constant scaling matrices which have commutative structure with 
A. Under this setup, the constantly scaled î oo problem can be defined as follows. 

Problem 1 For given G, find a constant scaling matrix S G S and internally stabilizing 
controller K minimizing 7 which satisfy the following inequality: 

S 'T t (G ,K)S-2 | | 0 0 < 7 (15) 

• 

In the /i-Synthesis with D - K iteration, the scaling matrix 5 can be chosen as a real-
rational, stable, minimum-phase transfer function. Hence we see that the 7 satisfying 
(15) is a upper bound of /t. 

There are several methods for optimizing (15) (Yamashiro et al. 1996, Yamada & 
Hara 1998). In this paper, we use the dual iteration method described in (Yamashiro et 
al. 1996). In this method, the optimized variables which are fixed at each iteration are 
diminished to extend the optimizing space, and we could have good sub-optimum solution 
with a few iterations. 

The state-space realization of G is defined as follows: 

" A B1 B2 

G(8) : = C i Dn 

c2 
D21 0 

(16) 
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Using the matrices in (16), define the following matrices: 

J. 
N := M := Co D-'21 

Af := diag[iV, / ] , M := diag[M, / 

where A 1- denotes the column full-rank matrix satisfying AA 1 - = 0. 
Under this setup, the following theorem can be shown (Yamashiro et al. 1996). 

(17) 

(18) 

Theorem 1 For a given 7, Problem 1 is solvable if and only if the following two equivalent 
conditions Cl) and C2) are satisfied. 

Cl) There exist a real matrix F, symmetric matrices P, Y and S € S satisfying the 
following three LMIs: 

PAF + AT

FP PBp CF

TS 
BF

TP 
SCF 

- 7 5 D F

T S 
S D F - 7 5 

M 
Y A + A T Y Y B i C i r 5 

B i T Y - 7 5 D n T S 
SCi SDn - 7 5 

Y > P > 0, 

< 0 , 

M < 0, 

where 

cx D1

11)
 + {D2

21

]F-

(19a) 

(19b) 

(19c) 

(20) 
'AF BF 

CF DF. 

C2) There exist a real matrix L, symmetric matrices Q, X and R £ S satisfying the 
following three LMIs: 

AX + XAT X C j BiR 
dX —yR DnR 
R B / R D n T - j R . 

ALQ + QAL

T QCL

T BLR 
CLQ - j R DLR 

h 
X>Q>0, 

R B j R D L

T - 7 P J 

Af < 0, 

< 0 , 

where 

The following relations are satisfied between the condition C l ) and C2). 

P = X - \ Y = Q-\ S = R-1 

(21a) 

(21b) 

(21c) 

(22) 

• 

(23) 

Note that the condition Cl) will be LMI conditions with variables (P, Y, S) if F is 
fixed. Similar to this, the condition C2) will be LMI conditions with variables (Q, X, R) 
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Figure 4: Block diagram of generalized plant 

if L is fixed. Using this fact and the relation (23), the following algorithm which is called 
"dual iterative algorithm" can be available. 

[Dual iterative algorithm 

Step 0 Set S = I and i = 0, compute (P, Y, F) minimizing 70 under the condition 
C l ) . Let i <r- i + 1 and go to Step 1. 

Step 1 Fix F and compute (P,Y,S) minimizing 7̂  under the condition C l ) . Using 
this (y, S, j i ) , compute (Q, R) by using (23) and L satisfying (21b). Let i «— i + 1. 

Step 2 Fix L and compute (Q, X , R) minimizing 7* under the condition C2). Using 
this (X,R,7 i ) , compute (P,S) by using (23) and L satisfying (19a). 

Step 3 If the relative error |7j — 7 i_ i | is less than the tolerance, quit the iteration. 
Otherwise, let i <— i + 1 and go to Step 1. 

C O N T R O L L E R D E S I G N 

The nominal model which has only two rigid modes is obtained by setting n — 2 
in (4). It is assumed that the bounds of the time-varying parameters kf, kT are ±0.5% 
respectively. Under this condition, PQ in (14) is obtained. Fig.4 shows the generalized 
plant for controller design. In this figure, W a is the weighting function for the additive 
perturbation which is neglected in the nominal model, W d is the weighting function for 
the robust performance against to the various force disturbances, G a v is the model of the 
current amplifier which is a 2 x 2 transfer function from the input voltage to the coil 
current. A a and are 2 x 2 normalized full blocks. The frequency responses of the 
weighting functions are depicted in Fig.5 in which the additive error is plotted as the 
dotted lines. 

Using this Gr, we apply the dual iteration algorithm for the constantly scaled 
synthesis and obtain the controller Kcs. The history of 7; over 10 iteration is shown in 
Fig.6. We also compute two more controllers for comparison. One is the controller Kdki 
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Figure 7: Time response via controller Kcs 

obtained by using D - K iteration with constant scalings, and'the other is the controller 
Kdk2 obtained by using D - K iteration with dynamical scalings. The histories of 7; of 
these two cases are also plotted in Fig.6. 

In the dual iteration, the optimization is converged to the sub-optimal solution within 
4 steps. On the other hand, the D - K iteration with constant scalings converges very slow, 
and the value of 7 at 10th iteration is larger than that of the other two methods. 

S I M U L A T I O N 

The obtained continuous-time controllers K c s and Kdk2 are discretized by the Tustin 
transformation with a sampling frequency of 8kHz. The simulation model which is con­
structed in SIMULINK can simulate the nonlinearity of the magnetic bearings, the satura­
tion of the circuit amplifier, the computational delay of the controller and the vibration 
mode of the flexible rotor up to 4th mode. 

To evaluate the performances achieved by K c s and K d k 2 , we show the step response of 
Xf and x r in Fig.7 and Fig.8 in which the impulse disturbance acts on the the front side 
of the rotor at t = 0.025[s]. From these figures, it is confirmed that that the controller 
K c s with 10th degrees of order can achieve a good performance as same as the controller 
Kdk2 with 22nd order. 

C O N C L U S I O N 

This paper has proposed the design method of the controller for magnetic bearing 
systems using the constantly scaled Hoo method. I t has been shown that the dual iteration 
algorithm is quite well for the optimization compared with the constantly scaled D - K 
iteration. The simulation results have been shown that the resulting performance of 
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Figure 8: Time response via controller Kdk2 

the constantly scaled Hoo controller is satisfactory in the sense that it can achieve same 
performances as / i controller by the low order controller. This means that it is useful if 
the trade off between the performances and the realization cost of the controller must 
be considered. Furthermore, in the dual iteration method, there is few optimization 
parameters which must be given by the designer compared with the D - K iteration with 
dynamical scalings. So we could also use this method as the alternatives for //-Synthesis. 
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