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ABSTRACT 
This study is concerned with the adaptive forced rejection approach for a single periodic output disturbance with an 

unknown period and its application to unbalance vibration suppression in rotor-magnetic bearing systems. A discrete 
recursive technique is applied to estimate the unknown disturbance period and then to internally and adaptively 
generate a pseudofeedforward reference signal such as that this disturbance is eliminated. Simulations are carried out. 
The results indicate that both the estimation algorithm of an unknown period and reference signal adaptive generation 
algorithm are stable. Finally, the approach is applied to a problem of unbalance vibration suppression in 
rotor-magnetic bearing systems. Approximately 20dB and 7dB reductions in unbalance vibrations were 
experimentally obtained in the horizontal and vertical directions of the front and rear sides of the rotor, respectively. 
The experimental results show that the proposed algorithm is effective for achieving unbalance vibration suppression. 

INTRODUCTION 

Active magnetic bearings provide several advantages over conventional bearings for various practical industrial 
applications. These advantages include elimination of the lubrication system, friction free operation, decreased power 
consumption, operation at temperature, vacuum extremes and high rotation speed, and vibration control. However, 
active magnetic bearings are inherently unstable owing to the negative stiffness elements caused by the 
electromagnetic field. It is necessary to use feedback controller to stabilize the rotor-magnetic bearing systems. 
Recently there has been significant interest in digital control of magnetic bearing systems. The designs for such 
feedback controller have been developed using classic theory and state-space model approaches. 

Vibration caused by mass unbalance are common problem in rotating machinery including the rotor-magnetic 
bearing systems. Perfect balancing is very costly and almost impossible if the unbalance distribution is changing 
during operation. Thus, residual unbalance always occur. If the unbalance vibration become large enough, the 
rotation will become impossible. It is also necessary to actively compensate for unbalance using active magnetic 
bearings, except feedback stabilizing. There are several reasons for unbalance compensation in AMB systems: 

*Amplifier saturation can be avoided. When no unbalance compensation is used, the synchronous coil current 
caused by unbalance is approximately a quadratic function of rotation speed. Therefore, avoiding saturation becomes 
crucial for high-speed rotors. 

""Housing vibrations and noise emission are reduced. 

*Costs are reduced, because the required amplifier power is lower. 

•Displacement orbits are reduced when the rotational speed crosses the rigid modes. 
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564 UNBALANCE CONTROL 

Many researchers have investigated the control of unbalance response using magnetic bearings. One method to 
achieve unbalance response attenuation is through the addition of pseudo-state in observer-based controller, that is 
insertion of notch filter into the stabilizing control loop. Recent examples include leaning control method, 
disturbance cancellation control, and so on. The major drawback of this method is that the method requires an accurate 
plant model and the resulting controller order is usually quite large for the implementation on a single DSP. A 
completely different approach is the adaptive feedforward compensation of unbalance synchronous compensation 
signals are injected into the stabilizing control loop in order to cancel or minimize synchronous unbalance forces or 
displacements. 

In the present paper, we propose a frequency estimation algorithm of a periodic signal with a single frequency and 
a novel Fourier coefficients adaptation algorithm which are use to generate the synchronous compensation signals. 
Then we combine these two algorithms and implement them on DSP and apply them to unbalance vibration 
suppression of rotor supported by magnetic bearing. 

FREQUENCY ESTIMATION OF A SIGNAL WITH A SIGLE FREQUENCY 

If CO is not precisely known, prior to applying adaptive corrective laws for a(fc)and p(Jt), the frequency 
estimation algorithm is necessary. Here we use the frequency estimation algorithm proposed by Tsao and Qian[4] to 
estimate the frequency of output disturbance. 

Consider a periodic signal d(t) that is not identically zero with period x*. the frequency estimation algorithm is 
based on the gradient minimization of a quadratic function 

y(x)=0.5 f 
Jl-Tm 

[d(s)-d(s-x))2ds (1) 

where T^^x*. For the following gradient adaptation algorithm: 

« + i ) = « ) - H » m . w ^ ( 2 ) 

Tsao and Nemani have shown that there exists y.a ,h > 0 such that if x0-nx* < a, then x-mx* as t —> «> where n 
is an integer. The cost function J(T ) is periodic and has local minima at 

T = nx", n = ±l ,±2, 

For the iteration Eq.(2) co converge to T*, the initial condition IQ must lie within the concave region containing 
T \ 

Let T be the known upper bound of the disturbance signal period and consider a time period 
Tm* where 7 ^ > T . If AT is the sampling period, then let 

T ^ L A T and X = riAT (4) 

Consider a known set of data { d k ; 1 < k < 2L+2 } and define [T]] as the integer part of the real number TJ. Then the 

two adjacent integers of r\ are r\ and "n +1. The partial derivatives of J in Eq.(2) at these integer points are 

and 

C/T OX C/T 

(7) 
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and Eq.(2) for the period as a function of T) 

„ ( 1 + 1 ) = , l ( 0 . i ^ m 

In real-time implementation, the iteration period need not coincide with the sampling period since the iteration 

operates in the background on a fixed set of sampled data. 

A D A P T I V E R E J E C T I O N O F P E R I O D I C D I S T U R B A N C E 

Consider a active control system for periodic disturbance using adaptive algorithm as shown in Fig. 1. Here plant 

is stable. Figure 2 shows the functional blocks of adaptive algorithm for generation compensation input. As shown 

in Fig.2, the adaptive algorithm generates a synchronous correction signal which is used to reduce or eliminate the 

response of the sinusoidal disturbance from the system output according to residual error. 

At first, we can assume that a sinusoidal disturbance d is as follows: 

d= adsin(a)f) + pdcos (wf) ^ 

where a d , $ d are the Fourier coefficients of the disturbance. 

and the transfer function of the plant is given by G(s). Where, GO'co)=Ae-'e. 

For the above disturbance, we can construct a synchronous correction signal of the following form 

r = a(t)sin (tar) + P(t)cos (u)<) (10) 

here a(0=cx(Jfc). (3(0=PW» f o r kT<,t < (k+l)r, , k=0,l,2 are time varying Fourier coefficients computed on-line 

and updated at a sampling period of T,. Then, the output signal of the plant and the residual error signal can be 

derived as Eq.(ll) and Eq.(12). 

r \ 
y = A a(t)sin (CD/ + e) + P(t)cos (to/ + fl) ( 1 ^ 

e = A fa(t)sin (wt + e)+ p(t)cos (wt + e)) + adsin (wf) + Pjcos (wf) 

To obtain n^ t ) and ^ ( t ) we demodulate e(t), filter the intermediate results with low pass filters having an 

impulse response h(t) as shown in Fig.3. The purpose of the low pass filter is to filter out the non-D.C. 

components. For this reason we choose its cut-off frequency as coB«2co. Furthermore, we choose the sampling 

frequency as coJ=27t/rj<(na so that n,(f) and rt2(t) will reach steady prior to each sample. Now, if high frequency 

components having sufficiently small gain are neglected, then the outputs of the low pass filters can be 

approximately written as follows; 

,,,(0 = 0.5 ( A u cos (0) + u j - A P sin (o)j ^ 

„2(f) = 0.5 \A P cos (0) + p d + A u sin (0)J ( 1 4 ) 

Next, we will describe the adaptive correction laws for the Fourier coefficients a(fc),P(/fc)of the synchronous correction 

signal r. 

a) Case in which 6 is known 

In this case we can derive the following adaptive correction laws for the Fourier coefficients a(k),$(k) 

a i k + l ^ k h i c o m n M + s i i m r h m V A (15) 

P0fc+1) = P(A:)-(cos(e)rt2(/t)+sin(e)n1(A:))M (16) 
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We substitute Eqs.(15) and (16) into Eqs.(13) and (14), and n,^) and n^/) at a sampling period of Tt are demoted by 
and n2(k) respectively, then a discrete-time system of the forms 

nl(k+l) = 0.5nl(k) (17) 

n2(/t+l) = 0.5n2W (18) 

can be derived. 
It is easily seen that the system is asymptotically stable, because the two eigenvalues of the system are both -0.5 

within unit circle. However, there are many cases in which frequency response of a plant can not be obtained, or 
although the one of a plant can be obtained, the implementation of Eqs.(15) and (16) on-line is very difficult, because 
qis dependent of frequency. Furthermore, when there is uncertainty in 9 , if adaptive corrective laws Eqs.(15) and 
(16), the system may become unstable. Therefore, it is necessary to derive adaptive corrective laws which are 

independent of 0. 

b) Case in which 0 is unknown 

In this case, we propose following adaptive corrective laws «(*) and p(jfe) which are independent of Q. 

a (*+l) = u ( k ) - n . ^ + l ) 11,(10 ( 1 9 ) 

P(A:+l) = P(A:)-H2(jfc+l)n2(k) (20) 
Where p., is step size. And 

|i,(k + 1) = ̂ (k) sgn (nftk - 1) - nftk)) (2i) 

+ 1) = fi2(k) sgn (n^(k -1) - a i m (22) 

We substitute Eqs.(19) and (20) into Eqs.(13) and (14), and n^t) and n 2(f) at sampling period of T, are denoted by 
(k) and ̂  (k) respectively, then a discrete-time system of the forms 

«,(*+!)=« ,(*)+0.5A( Mk+l)n2(k)siH (o) 

-Mk+1)0,(10008(9)) ( 2 3 ) 

ii2(k+l)=n^k) - 0.5A(ji2(k+l)ii2(k)cos (0) 

+ Mk+1)11,(^8111(0)) 
can be derived. v ' 

The system given by Eqs.(23),(24) and Eqs.(21), (22) is nonlinear discrete-time system. Here we verify the 
asymptotic stability of the system through a great number of computer simulations. Phase trajectories of the 
nonlinear discrete-time system (21)~(24) are computed for various different es. 

Figure 4 shows phase trajectories of the nonlinear discrete-time system Eqs.(21)~(24) for several representative 0 
s. In above simulation, we choose ^(O)^^ / A, i = 1,2. From Fig.4, it is clear that the nonlinear discrete-time 
system Eqs.(21)~(24) is stable. Furthermore we also compute the phase trajectories of the nonlinear discrete-time 
system Eqs.(21)~(24) for various different Qs and several ̂ (0)8 satisfying 0< ̂ (0) < 1 / A, i=l,2 . As the result, we 
can conclude that the nonlinear discrete-time system Eqs.(21)~(24) is stable as if .̂(O) satisfies 0 < ^(0) < 1 / A, i = 
1,2. 

From Eqs.(12)~(14), we can note that if «,(/) and ^(r) both converge 0 , then indeed the residual error signal e(t) 
also converges 0. Moreover, although besides sinusoid component at frequency co, disturbance signal d contains 
sinusoid components at other frequencies, as if the difference between the frequency ca and the other frequency is larger 
than (aB, Eqs.(13) and (14) still hold and the residual error signal converges the sinusoid components at other 
frequencies. Hence, we can conclude that the sinusoid components at other frequencies do not almost give effect on 
dynamic of plant. 
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SIMULATIONS 

At first, for a signal with frequency 100Hz, taking initial condition CD0 =120112, we conducted simulation using 
the frequency estimation algorithm presented in section 2. Figure 5 shows the simulation result. It is seen that the 
frequency estimation algorithm is exact and fast. Next, we performed a great number of simulations of disturbance 
rejection using adaptive corrective laws for QL{k) and ${k) presented in section 3 for various 0 . For restriction of 
paper, we only give the simulation results for A = 1,0 = 0 and A = 1, 6 = iin/6 in Fig.6 and Fig.7. From Fig.6 
and Fig.7, it is clear that Fourier coefficients a(/t), ${k) converge to constants and the residual error signals converge 
to zero within 1 second. 

APPLICATION TO UNBALANCE VIBRATION SUPPRESSION OF A ROTOR 
SUPPORTED BY MAGNETIC BEARING 

Figure 8 shows test apparatus of AMB system under consideration. An induction motor rotor is located in the 
middle of the shaft and two radial magnetic bearings are located on each side of the motor rotor. A thrust magnetic 
bearing is located at the left end of the shaft. The radial magnetic bearings together control two rotational and two 
translational degrees of freedom. The thrust magnetic bearing controls the displacement in the axial direction. 
Eddy-current-type proximity sensors are set up for the radial magnetic bearings at both sides of the bearings, but inner 
sensors are only used in tests. 

The block diagram of the control system implemented digitally is shown in Fig.9. A digital signal processor 
TMS320C30 with high-speed A/D converter and D/A converter is used to accomplish control algorithm and access 
data from or to host personal computer. 

In this experimental setup, at first, a linear multi-variable analog PID controller is applied to stabilize and 
decouple the rotor-magnetic bearings system. The four magnetic bearings in x direction and y direction can be 
considered as decoupled and as four independent SISO systems. 

Then we directly applied the combination of the proposed frequency estimation algorithm and the proposed 
adaptive algorithm for periodic disturbance rejection to suppress the unbalance vibration of the rotor. Figure 10 
shows the comparison of the trajectories of the geometric center positions between before applying proposed control 
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and after applying proposed control when rotaUng at 6204 rpm. Figure 11 shows the stationary response of the 
geometric center positions when rotating at 6204 rpm. Figure 12 shows the spectra of stationary response of the 
geometric center positions without applying the proposed control when rotating at 6204 rpm. Figure 13 shows the 
spectra of stationary response of the geometric center positions after applying the proposed algorithm when rotating 
at 6204 rpm. The amplitudes of unbalance vibration of front end and rear end of the shaft in x-direction and 
y-direction are approximately 0.3vp-p, 0.16vp-p, 0.3vp-p and 0.2 vp-p respectively, before applying proposed 
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adaptive algorithm for periodic disturbance rejection. But after applying proposed adaptive algorithm for periodic 

disturbance rejection, they are reduced to about 0.035vp-p, 0.042vp-p, 0.052vp-p and 0.1 vp-p. From Fig.12 and 

Fig. 13, it is seen that the vibrations of the shaft at the fundamental fiequency corresponding with rotating speed 6204 

rpm are reduced by 22dB, 20dB and 8dB respectively. This means that the combination of the proposed frequency 

estimation algorithm and the proposed adaptive algorithm with gain scheduling for periodic disturbance rejection can 

be effectively used to suppress the unbalance vibration of the rotor. 
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CONCLUSIONS 

The simulation and experimental results clearly demonstrate the high degree of unbalance response attenuation 
that can be achieved with the combination of the proposed frequency estimation algorithm and the proposed adaptive 
algorithm with gain scheduling for periodic disturbance rejection. However, the proposed frequency estimation 
algorithm will not perform well, if the sensor noise is large. If the sensor noise can be reduced by sensor itself and/or 
filter algorithm, the degree of unbalance response attenuation can be further improved. 
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