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ABSTRACT 

This paper describes an analytical solution to the Linear-Quadratic optimal design prob­
lem of the active magnetic bearing controller for a rigid high speed (gyroscopic) rotor. Dy­
namic properties of the optimal system are treated and compared with those obtained for 
the system with a conventional PD decentralised controller. 

1. INTRODUCTION 

The Linear-Quadratic (LQ) optimal control is widely used in the Active Magnetic Bear­
ing (AMB) technology (Shweitzer, Bleuler and Traxler, 1994; Kim and Lee, 1994). The 
LQ-design problem is known to be based upon the solution of a non-linear matrix Riccati 
equation (Kwakernaak and Sivan, 1972). Numerical methods are usually used to solve this 
equation. But a numerical approach requires much design efforts and makes difficult utili­
zation of the optimal control algorithm in real time calculations. Therefore, there is much 
practical interest to obtain an analytical solution of this problem. Such a solution in the case 
of One-Degree-Of-Freedom (1DOF, or second-order) AMB system may be found in 
(Hampton et al., 1992). 

The tilting motions of a high speed rotor are coupled by gyroscopic forces and described 
by a fourth-order system. In the case of this system, where the control variables are mag­
netic forces and moments, the LQ-design problem has been analytically solved in (Zhur­
avlyov, 1991). The application of such a controller for the flywheel energy storage system 
prototype is described in (Zhuravlyov, Afanasiev and Lantto, 1994). In this paper the LQ-
optimal controller is analytically designed in the case where the control variables are cur­
rents. The dynamic properties of the optimal closed-loop control system obtained (pole 
distribution and unbalance responses) are also treated analytically. 

It should be mentioned that the optimal controller is not very simple to implement be­
cause it is multicoupled and speed-dependent; such a controller is known as centralized. 
Therefore, there is a quite natural tendency of designers to use more simple uncoupled and 
speed-independent controller in all applications including AMBs for high speed (gyro-
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scopic) rotors. Such a non-optimal decentralised controller is evidently characterised by 
greater control efforts. The question is: How much? This question is not new, it is analyzed 
by several authors (see Shweitzer, Bleuler and Traxler, 1994; Zhuravlyov, Afanasiev and 
Lantto, 1994), but their conclusions are different. For this reason, in this paper control ef­
forts of the optimal AMB system and of the system with a conventional PD decentralised 
controller are compared. 

2. MODELING OF ROTOR-BEARING SYSTEM 

As shown in Fig.l, a rigid gyroscopic rotor of mass M, equatorial J, and axial J 3 prin­
cipal moments of inertia spins at the constant rotational speed co in two radial AMBs 
symmetrically located at the distance /from the center of mass C. The eccentricity e = OC 
and the inclination y of the principal axis of inertia characterize a static and dynamic un­
balance of the rotor. We shall determine the position of rotor by coordinates x0 and of 
the geometric center O and by angles of titling (px and <py about x and y axis, respec­
tively. The two radial AMBs incorporate four pairs counteracting electromagnets with bias 
current z'0 and control currents i v i 3 , / 4 ; the differential driving mode of the bearing 

electromagnets is assumed to be used. 
The system model under consideration is given by 

Mx0 - 2cpxQ = cj (z, + z'j) + Meco2 cos cot 

My0 - 2cpyQ = c, (i2 + z4) + Meco2 sin cot 

Jxpx +<x>J3(f>y -2cpl
2(px =/c,(z'2 -z4) + (yi -J3)yco2 coscot 

Jipy-coJ3(px-2cpl
2<py =/c,(z3 -/,) + (./, -J3)yco2smcot 

(1) 

AMB 1 AMB 2 

Figure 1. Model of a rigid gyroscopic rotor - AMB system 
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where cp is the position "negative" stiffness, and c, is the current stiffness of AMB. Note 
that the first two equations in (1) describe translational motions, and the others two coupled 
by gyroscopic tirms describe tilting motions of the rotor. We rewrite Eqs.(l) in the complex 
form 

z - k 2

2 z - u z + eo)2 exp(jcot) (2) 

tp - jh(p - k2(p = u + ( l - m)yco2 exp(jcot) (3) 

where j = ^pC, z = x 0 + j y 0 , (p = (px+ j(p y , u z = c, [(/, + i 3 ) + y(/2 + z 4)]/M, 

u = l c i [ ( i 2 - i 4 ) + j X h - O V J\> k : = 4 2 C P I M > k = ^ 2 c p l
2 I J X , m = J 3 / J x , h = mo3 

is a gyroscopic parameter. 

3. OPTIMAL AMB CONTROL 

Consider a system modeled by the complex state-space description 

x{t) = Ax(t) + Bu{t) 

y(0 = cx(t) 

where x(t) is the n complex state vector, y(t) is the m complex vector of output variables, 
M(0 is the m complex vector of control variables, and A,B and C are all constant com­
plex matrices of appropriate dimensions. Consider the performance index 

CO 

§y\t)y(t) + pu\tMt)]dt (5) 
o 

where p is a positive weighting scalar, and the "*" denotes the conjugate transposition. 
The optimal control law minimizing index (5) is known to be given by 

u(t) = -p- ]B tPx(t) (6) 

where the nxn positive definite Hermitan matrix P is the solution of the complex valued 
algebraic matrix Riccati equation 

C'C + A'P + PA-p- lPBB tP = 0 (7) 

Applying to system (2) the LQ-design procedure (4)-(7) yields the optimal Proportional-
Derivative (PD) control law (see also Shweitzer, Bleuler and Traxler, 1994; Hampton et al., 
1992) 

' l + '3 = -(Sl*0 + g2*o)> '2 + <4 = - (g^O + g z h ) (8) 
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where the feedback gains are given by 

g ^ M f r S + f t / c , , g 2 =M^2{col +k]) Ic,, K ^ * z ) (9) 

Here co0 is the desired value of the undamped natural frequency of translational motions. 

The weighting scalar p correlates with co0 as p = \/(a>Q - k * ) . 
Applying to system (3) the LQ-design procedure (4)-(7), we have 

(10) 

x = (<p,(p)T, y = <p. B = (o,i)r, C = (1,0), 

A = 
"0 1 " 

, p = ~P\ Pi 
+ J 

_k2 jh_ Pi P^ 
+ J 

. - P A 0 . 

The second-order complex matrix Riccati Eq.(7) embodies four scalar equations 

p2

2+p2

4-2pk2p2-p = 0 

P2P3 ~PP\ +hpp4-pk2pJ=0 

p3p4-hpp2=0 

Pi -^PP i =0 

having the analytical solution 

4 3 
h-

2k2 2 2 2 
P*' P2=:—r2P4> P3=7P4> 

P4 = i 
64 

1 -
4k 2 v 3 1.4 

+ 
P3h P2h< 

1 -
4k 2 \ 

The optimal control law is then 

i2 - i4 = - J, (co)(px + k2 (co)<px + k3 {co)(py lie, 

lie, 

(11) 

(12) 

(13) 

where £,(<£>), k2{o)) and k3{o)) are, respectively, the optimal stiffness, damping and ra­
dial correcting factors of tilting motions of the rotor. These factors are given by 

kl(co) = Jnt+h4 l\6-h2k212+k2-h214, 

kl{cD) = pk,{cD), k3(Co) = h^k](co)l2 

(Q0 > k; h- mco; m = J3IJl) 

(14) 
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Figure 2. Variation of optimal stiffness (&,), damping ( k 2 ) and radial correcting { k 3 ) factors with 

rotational speed (h = mco, m = J j / J , ) for "expensive" control(Q0 =1.25A:), control of 

"intermediate cost" ( Q 0 = 2 k ) and "cheap" control ( Q 0 =10A:), where k = ^ 2 c p l 2 1 J x is the 

pole of open-loop system 

Here Q 0 is the desired value of the undamped natural frequency of tilting motions (about x 

and y axes) for the non-spinning rotor (i.e. with co and h equal to zero). The weighting 

scalar p correlates with Q 0 as p = 1 /(QQ - A:4). Fig.2 shows the variation of , A:2 and k̂  

with the gyroscopic parameter h. Functions k^h), k2(h) and k^h) have the following 

limits 

\\mk,{h) = 2{Q.l-k*)lh 2 =0, limk 2(h) = 2^Ql -k* Ih =0, 

limA:3(^) = ^ o - ^ 4 

(15) 

It should be mentioned that the limit - case Q 0 = k (p ̂ > co) corresponds to minimum 
control efforts, it is usually called "expensive" control (we shall consider this case assum­
ing Q 0 = 1.25k ). The other limit - case Q 0 » k (p-+ 0) corresponds to "cheap" control 

(we shall use value Q 0 = 10A:). 

The optimal control currents /',, /',, i 3 and /4 can be easily determined from (8) and (13). 
It is evident that the optimal feedback gains are not constant; they vary with the rotational 
speed co. 

4. DYNAMIC ANALYSIS OF OPTIMAL SYSTEM 

Translational motions of the rotor described by (2) and (8) are rather simple and, there­
fore, they are not treated in this paper. 
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Substituting (13) into (3) yields the optimal closed-loop control system for tilting mo­
tions of the rotor 

(p + {k2- jh)<p + (£, - k2 - jk3 )<p = (\- m)yco2 Qxp{jcot) (16) 

where k^k j and ^ are dependent on co in accordance with (14). Solving the complex 
characteristic equation of the system (16) 

s2 + (K - M s + k l - k 2 - j k 3 = 0, 

we find the optimal closed-loop poles 

(17) 

J, = -a + yQ,, s2 = -a - j Q 2 , (Q, > Q 2 ) (18) 

where 

a = Jkj2, Qli2 =^k,l2 + h2 IA-k2 ±hl2 (19) 

Note, that Q, is the nutation frequency; it increases with a and tends to the value 

Q, = h. The Q2 is the precession frequency; it tends to zero with co. Evidently, the real 

(non-complex) closed-loop system has four poles: si 3 =-a± yQ, and s2A =-a± jQ2. 

Given a particular solution of (16) as 

<p{t) = exp(ya*) (20) 

where 0° is the complex amplitude, and substituting (20) into (16), we find the modulus of 
the amplitude 

0° = 
l - m ya-

Jn 4

0 + 2(1 - m)k2co2 + (1 - m)2 co4 ' 

The complex control variable is given by 

" = -[(^1 -J%)<P + k2<P 

Substituting (20) into (22) yields 

lim<D( -r) (21) 

(22) 

u = U0

c exp(jo)t), (23) 

where the complex amplitude U° has the modulus 
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U0 =<l>0Jk? +{cok2 -k3)
2, limf/0 =y2/m-\Jnl-k4 (24) 

5. COMPARISON OF OPTIMAL AND DECENTRALISED CONTROL 

Putting co = 0 into the optimal control law (13) yields the decentralised control law 

" = + f2<P) (25) 

where / = fc, (0) - Q l + k 2 and f 2 = k2 (0) = ^ ( Q Q +^ 2 ) are constant (speed-
independent) feedback gains. The closed-loop system with the decentralised control is then 

P + i f i - jh)<p + Q2

0(p = (1 - m)yco2 exp(jcot) (26) 

by 
The amplitude of angle O and amplitude of control variable U of system (25) are given 

l-myco2 

^[Ql +(m-l)co2 \2+ 2(n2

0 +k2)co 

u = a>^(n2

0 +k2)2 +2(a2

0 +k2)co1 

lim<D = ^ limf/ = yco-fiiof+k2) 

(27) 

(28) 

(29) 

Figures 3 and 4 compares the typical responses to the step <px (0) = 1 of the rotor-AMB 
system with the optimal and decentralised controllers. It should be mentioned that in the 
case of non-spinning rotor (co = 0, h = 0) the both controllers provide the same step re­
sponses; but in the case of high rotational speed step responses become essentially differ­
ent. The optimal controller (Fig.3a) brings the axis of high-spinning rotor (h = 10Q0) to the 
zero state by the precession motion with the frequency Q 2 during a half of period 2xlQ. 2; 
the nutation oscillations of high frequency Q, and a small amplitude are superposed and 
damped very fast. The decentralised controller (Fig. 3b) is characterized by an evident os­
cillating transient process. Step responses of the system with optimal controller are pro­
vided by much less control efforts than with decentralised controller (Fig.4). 
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Figure 3. Step response (orbit view) of the system with optimal control (a) and decentralised control 
(b)for Q 0 =1 .25* , / ! = 10 f l 0 
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Figure 4. Step responses of the system with optimal control and decentralised control for 
"expensive" control (a) and "cheap" control (b) 

Fig. 5 compares the unbalance responses of the rotor-AMB system with the optimal and 
the decentralised controllers. In all cases the optimal controller provides less control efforts 
than the decentralised controller. One can see that the saving in control efforts increases 
with the ratio of moments of inertia m = J l i IJ x and with the rotational speed. Note that 

value of m lies in the range 0 < m < 2 ; the value m = 2 belongs to a thin disk with a mas­
sless shaft. The optimal controller is most advantageous for high speed (gyroscopic) rotors 
with the ratio 1 < m < 2. 
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Figure 5. Unbalance responses of the rotor-AMB system with the optimal controller and decentral­
ised controller for "expensive" control (a, b, c) and "cheap" control (d, e, f) and different ratio 

m - J j / y, 

6. CONCLUSIONS 

This paper has described the analytical solution to the LQ-optimal design controller 
problem related to a current controlled AMB system for a rigid high speed (gyroscopic) 
rotor. This solution simplifies the controller design procedure and makes possible to use the 
optimal control law in real time calculations. It has been also shown that the significant 
savings in control efforts (compared with a conventional decentralised PD-controller) may 
be achieved by using the optimal controller, especially for rotors having an axial moment 
of inertia greater than an equatorial one. 
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