ROBUST SLIDING MODE CONTROL OF A PLANAR RIGID
ROTOR SYSTEM ON MAGNETIC BEARINGS

P. E. Allaire,' A. Sinha?

ABSTRACT

A planar rigid rotor supported on magnetic bearings is controlled
using a robust sliding mode controller. Linearized magnetic bearings and
mass unbalance are considered. A nonlinear sliding mode controller
evaluates the magnetic bearing control currents which bring the rotor
response to the sliding mode surface and cause it to remain within the
boundary layer. A treatment of uncertainty limits is developed for unknown
bearing open loop stiffness, actuator gain, and mass unbalance. - A
numerical simulation showed the desired system response when the rotor was
subjected to large initial transient conditions.

INTRODUCTION

Magnetic bearings have been used for high speed rotors such as
gyroscopes, beam choppers, energy storage flywheels and other applications.
This paper discusses the dynamics and control of a magnetic bearing
supported rigid rotor for applications where the magnetic bearings are
supported in rigid supports. A key issue is the performance of the
controller in the presence of uncertainty in bearing characteristice and
rotor unbalance. The controller must be robust with respect to these
uncertainties. ‘ v

Many different types of controller approaches are now.being employed
for magnetic bearing controllers. Kanemistu, et al. [{1994) discussed the
use of Linear Quadratic Gaussian (LQG), H., Tipe Delay Control (TDC),
Sliding Mode Control (SMC), and Proportional Integral Derivative (PID)
controllers in the magnetic levitation support of a flexible body. The H,
and PID controllers were found to have high phase and gain margins for
excellent stability characteristics. The LQG controller was found to have
the best robustness with regard to spillover in a higher order vibration
mode. Theoretical results for the SMC controller indicated very good
robustness in the low frequency range, poor robustness at high frequencies,
and experimental results were inconclusive for the SMC due to an
instability. Yamashita, et al. [1996] considered an advanced controller
design using an H, design for a flexible rotor and compared it to a PID
controller design. The H, design increased the magnetic bearing/controller
stiffness to reduce rotor vibrations at low frequencies.

Sliding mode controllers were originally, developed in the Soviet
Union more than 30 years ago for flexible structures . The algorithm
relies on very high speed switching between the control values and has been
successfully applied to flexible structures [Sinha and Kao, 1991){Kao and
Sinha, 1992). Recent advances in high speed switching amplifiers have made
sliding mode controls feasible in industrial systems.
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Sliding mode controllers select a surface in state space, typically a
linear hypersurface, called the switching surface, and switch the control
input on this surface [Spong and Vidyasagar, 1989]([Sinha and Miller, 1995].
The control input is then chosen to guarantee that the trajectories near
the sliding surface are directed toward the surface. Then, any control
input will suffice to move the trajectory toward the surface. Once the
system is on the surface, the closed loop dynamics are completely governed
by the equations which define the surface. Since the parameters defining
the surface are chosen by the designer, the closed loop dynamics will be
independent of perturbations of the parameters of the system and robustness
is achieved. These principles are applied to the magnetic bearing
supported flywheel rotor. _

The specific problems are 1) the determination of the control gains
so that the rotor motion trajectory reaches the sliding surface in finite
time, 2) the specification of the switching logic to constrain the dynamic
rotor motions at the magnetic bearing locations is constrained to the
surface, and 3) the determination of the rotor equations governing the
surface to describe the dynamics of the system on the surface.

Nonami and Yamaguchi [1993] presented a detailed discussion of the
use of a sliding mode control for magnetic bearings in a flexible rotor
modeled as a rigid rotor. A linearized state space model was developed for
the system and a switching width selected for the sliding mode control.
Each feedback gain was switched at a specified percentage of linear
feedback gain, with a value of approximately 10% found to be optimum. The
results indicated that the sliding mode control was more robust, when a 10%
change in rotor mass was considered, than the best PID controller found for
the system, particularly when the rotor displacements were large.

Tian and Nonami [1994] presented a sliding mode control for a
flexible rotor operating up to 40,000 rpm. A reduced order model of the
rotor and bias current linearized magnetic bearings was employed with a
treatment of external disturbances. A continuous time sliding mode
controller which exhibited chattering behavior was replaced with a discrete
time sliding mode controller to solve the problem.

Tian, et al. [1996) describes a high speed grinding spindle-magnetic
bearing system using a bias linearized bearing and discrete time sliding
mode control. A variable structure system (VSS) disturbance observer is
employed to compensate for external disturbances. A switching manifold
design was developed to overcome some difficulties which had been
encountered when over conservative feedback gains cause chattering.

Jiang and Zhao [1996] developed a variable structure control control
using flux for a single DOF AMB system. It included voltage control and a
switching power amplifier design. The control algorithm was found to be

not sensitive to the operating point.
' Nonami and Nishina [1996] considered a discrete time sliding mode
control for a rotor supported in a permanent magnet biased magnetic
bearing. A combination linear and nonlinear control algorithm was
developed to eliminate chattering. A discrete time VSS observer was
developed to estimate unmeasured state variables.

Rundell et al. (1996) developed a sliding mode controller for a
vertical rotor to control rotational dynamics of the shaft. A sliding mode
observer was developed for state and distubance estimation. Simulation
results indicated the robustness of the controller.

Charara (1996) considered several methods of nonlinear control of
magnetic levitation without bias flux. One of these approaches was the use
of a sliding mode control of the switching amplifier directly to combine
the sliding mode switching function with the control stage of the switching
amplifier. A '

This work discusses the dynamics of a single mass rigid planar rotor
supported on magnetic bearings. Figure 1 shows the geometry. The purpose
is to conduct an analysis of robust sliding mode control on the rotor
dynamics and evaluate the linear and nonlinear control force laws to be
employed with the magnetic bearings. The effects of this type of control
law on the uncertainty of magnetic bearing open loop stiffness, actuator
gain, and rotor unbalance is discussed.
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MAGNETIC BEARING FORCE

A double sided magnetic bearing has the net force given by

o HN’ifA  pN’i3A  pNi{A  pN?izA
4912 4922 4(g,-u)? 4(gotu)?

(1)

if the bearing upper and lower poles have the same pole face area, the same

number of coil turns, and air gaps §,=g,~U and g} gotu (Allaire, et al.,
1994, 1997).
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Figure 1. Schematic of Rigid Rotor on Magnetic Bearings
_ In Planar Small Amplitude Motion

SYSTENM EQUATIONS OF MOTION

The rigid rotor is supported on magnetic bearings at the ends of the
rotor (for simplicity in the analysis) with bearing span L, as shown in
Figure 1. Here the magnetic bearings are modeled as connected to ground
and the rotor is assumed to be in planar vibrations in the transverse
direction. The rotor transverse displacements at the bearing locations are
denoted as U; and U,. The centroidal mass moment of inertia of the rotor
is I; and the rotor is assumed to have the disk center of gravity placed
at a distance a from the left end and b from the right end.

The system equations of motion in terms of the rotor transverae
displacements at the bearing locations are

bm, I, am Ix b

28, x &all__x6 D2

2L 12 2L 12| [d, {:1} 7 Jotcosat 2
= +

bm_Ix am, Ix| [U: 2 2 Uwlcosant

2L 1,2 2L ? L

where the first term on the right gives the magnetic bearing forces and
gecond term on the right represents the planar. forces due to unbalance U.
The phase angle of the unbalance can be taken as zero without loses of
generality. The control forces can be produced without a bias current, as
given in Eqg. (3), or with a bias current, as given in Eq. (8).

If the magnetic bearings are operated with a bias current, the
bearing force equations are linearized and the bearing forces are given by
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where the equations are still nonlinear in the force limit due to
saturation. Steady state magnetic bearing currents, such as for constant
unidirectional loading, are subtracted from the total current to leave the
dynamic force terms. Then the system equations of motion are

-

for the rotor supported in magnetic bearings with bias currents.

In industrial magnetic bearing control systems, modal control is
often employed to control rigid body modes. The design is considerably
simplified by decoupling into two single input systems. Define the
dynamically uncoupled coordinates as

u
u;

where Vv, is the displacement of the rotor mass center and VvV, is the
angular displacement of the shaft. Then the equations of motion are
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0 k,,
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where
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Also, i_=[i_ icz]T and v=[v, Vz]T. The values h are the modal control
forces.

ROBUST SLIDING MODE CONTROL

A significant problem in rotors supported in magnetic bearings
concerns the uncertainty in magnetic bearing characteristics and rotor
unbalance. Following Asada and Slotine [1986], the sliding mode control
law is given by
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i_ = Hr+h | (8)

-~

whereﬂ and B are estimates of H and h, respectively. Let

rKy20Kk;5/U be estimates of Kk, ,k; +U. The objective is to
de ermil.ne the control vector r which yiefds the 3 sired sliding mode
control for the rotor-magnetic bearing system. Then H and B are defined
by (7) with the estimated values of the bearing open loop stiffness,
actuator gain, and unbalance replacing the actual values in (7). From (6)
and the estimated matrix h, the equation of motion is

Vv = H'Hr+H'Ah (9)

where Ah=R-h. Let H'=[L LZ]T and E—[H1 H,]. Then the first term on
the right hand side of (9)

L _l_(k ]:12) | Ixc(_ 1511+]:12]
g - L1Ii1 L1H.2 - 2\ ky ki mL\ ki ki, (10)
L,H, L,H, Lm _k“ k;, 1] k; ku
i 41 ( ku kiz] 2(k i1 kiz)

The second term on the right hand side in (9) is

1
1 L.AR EA (11)
x- Ah = -
21,
where the coefficient A is
~ k - k
A= [kmﬁ#'ku.z)("1—‘3"2)‘”(kuzﬂr kuz)(v1+bvz)
kn kiz
(12)

-k k
5254 _y| B p2coset |Gtz -u| 2 w2coset
k;, |I 2 )L

The limits on the errors in bearing parameters and unbalance are given by

—<| |<Yj ' |Euj_kuj|<6j . |U-Ul<k , j=1,2. (13)
Yj 1_1
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It should be noted that Ky=(kij"k[3")"'" 1f kIj"sk,<k[* and v,>1 for

j=1,2. -
It can be shown that Emm<LkH*<em“ ¢+ k=1,2 where

1/1,1 Y1+Ya
emin = S| —+— enax = 1 72 14
2(\(1 Yz) , . (10)

Furthermore, inequalities related to the limitations on the system model
uncertainty cross terms are given by

1,8, |< 22 max (vy0v;) - ———t
2 mL Y20 max(vy,v,)
(15)
~ m 1
L. H |« ——|max _——
|L.H, | i1, (Y1rY2) maX(Yl,Yz)]
and for the coefficient A
|a| < [Y151_(|Eu1|+61)(Y1-1)]|V1_avz|+[Y262'(|ku2|+52)(\(2'1)]|V1+bV2|
(16)

- b -~
Hry, *(|JU[+K) (v,-1 )]-Eoo2 lcosat [~[ry,+{|U[|+K) (v,-1 )]%mz |cosat]

These terms are important to the sliding mode control algorithm.

The objective is to choose a sliding surface corresponding to each
control input and then to select the control law so that a sliding motion
exists on the intersection of the sliding surfaces. Define the two linear
hyperspace surfaces S; as

s, =Vi+2}\.ivi+}\§fotvi(t)dt , i=1,2 and A,>0 (17)

Here there are 2 linear sliding surfaces, one for each of the inputs. The
parameters A; represent the slopes of the sliding surfaces in hyperspace.
The condition to bring the system response within the boundary layers
around the sliding hyperplanes and to remain inside them, called the
reaching conditions, is

5;8;, <0 , [s;]>¢; (18)

Here ¢; is the thickness of the boundary layer around the sliding
hyperplane. The elements of the vector I' which satisfy the
conditions (18) are given by

r;=G; fi—gisat(%)] , i=1,2 (19)

1
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where

1/2
max
G, = (€™M V2 | £ = —2nv,-N - | &
i-(€1 €; ) ¢ I; = VirAiVy o By = | —
_ €;

. R (20)
91231[(1‘/311) |Z, |+ (L,8h) +|L,H, ||, |+’71]

gzzpz[(l ‘551) | £, |+ (L,Ah) + |L2§1»| |z, |+’72] _

There are cross terms which depend upon |r1| and |r2| in (20) which require
that ¢,,g, have to be determined simultaneously. From (19),

|r;| = G;|,|+Gk; , i=1,2 (21)
Also, from (20)

9,8, |L:H,1G,9, 2 ay; 4 -B;|L,H,|G9,+9, 2 ay, (22)

" where

Ay, = 31[( 1-8,)7 L, |+ (L1M)+n1+IL1§2 |G, |Z, ”

| . (23)
Y pz[(1—B2)“1|r2|+(L2Ah)+n2+|L2H1|G1|r1|]
The parameters §; are given by (22) as
l91] _ 1 1 |L,H, |G,B, [|ay, (24)
92 1'13132 |L1Hz||L2H1|G1G2 |L2H1|G1pz 1 Q22

For §,,9, to be positive, B8, |L1§2||L2ﬁ1|G1G2<1. When Y,;=Y,=Y, the left
hand side of this inequality is
2
2
Y1‘1)

31/32 |L132||L2§1|G1G2 = ( 2

Then, positive values for ¢,,g, are obtained when 1<y</3. 1f vy
satisfies this condition, then the reaching condition is met. It is
guaranteed that |S;|<¢; and |v,|<2¢/],;.

NUMERICAL EXAMPLE

An example rotor, with numerical values given in Table 1, was
selected for analysis purposes. The uncertainty in the model is in the
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An example rotor, with numerical values given in Table 1, was
selected for analysis purposes. The uncertainty in the model is in the
bearing open loop stiffnesses of 5% and actuator gains of 10% while the
unbalance uncertainty was approximately 50%. The estimated model
parameters are given in Table 1. Table 2 presents the control parameters
selected by the sliding mode algorithm described in the above derivation.
Fig. 2 showns the time response of the variable Vv,(t) from the initial
value of -5x10° m with a steady state amplitude of less than 0.2x10% m.
Fig. 3 is a plot of the V,(t) time transient response from an initial
value of 5x10° rad with a steady state amplitude of less than 0.1x10° rad.
The performance of the sliding mode parameters is shown in the next two
plots. Fig. 4 gives the response of S;(t) from an initial value of -
10x10° m/s while Fig. 5 shows the time transient response of S,(t) from
the initial value of 10x107 rad/s. Fig. 6 gives the time transient
control current values I_,(t) and i_,(t) during the control with a
steady state amplitude of approximately 0.5 amps for each control current.

Table 1. System Parameters

x10
Parameter Value T NAL T T T
m 30 kg ol [ NN A AAA
Ie 0.30 kg-m?

bl ﬁ
a 0.18 m -

b 0.12 m §_2 ............................................................ .
Eu1=Eu2 —1x106 N/m 3kl ...... ....... ,,,,,,, ....... ‘, AAAAAA . ..... .
— P . : . . . . : .
kui=ky ~0.95x10° N/m 1 SR OURO OO OO TS OO OSSO S ]

6,=6, 0.1x10° N/amp

E. =]E' 100 N/amp '50 04:31 0.;02 0;3 O.;M 0‘205 0.:)6 0‘207 uim 0.09
il *i2 ~ Time(sec.)

ki;=k;, 110 N/amp Figure 2. Time Transient Response
_ 1.2 of Sliding Mode Displacement

Yi7Ya : Parameter V, For Rigid Rotor

U 0.0001 kg-m

U 0.000154 kg-m

K 0.0001 kg-m

w 10,000 rpm

Table 2. Control Parameters

Parameter Value
Ay 100 rad/s
A, 100 rad/s
¢ 1 0.005 m/s H i i i i i i ;
"0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
¢2 0.005 rad/s Time(sec.) :
2
! 0.1 m/s Figure 3. Time Transient Response
2 of Sliding Mode Displacement
=2§ 0.1 rad/s Parameter V, For Rigid Rotor
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si{m/sec.)
o

0 " . . . . A . A
) 001 002 003 004 005 006 007 008 009
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Figure 4. Time Transient Response
of Sliding Mode Hyperspace Plane
Parameter §, For Rigid Rotor

-4}

P s " L . . " " L
) 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
. . Time(sec.)

Figure 5. Time Transient Response
of Sliding Mode Hyperspace
Parameter S, For Rigid Rotor

CONCLUSIONS

A robust sliding mode
controller has been developed for
a planar rigid rotor on two
magnetic bearings with linearized
bias currents and mass unbalance.
The sliding mode controller
insures that the system response
will move to a hyperplane, within
a boundary layer. Estimates of
uncertainty limits are obtained
for magnetic bearing open loop
stiffness, actuator gain, and mass
unbalance. The sliding mode
control was implemented for an
example rigid rotor system on
indentical magnetic bearings. The
controller produced the desired

system response when subjected to
large initial transient
conditions.

2 T Y T T T T T

Inc. Current(Amp)

1 -y n L L " " S I
0 0.01 0.02 0.03 0.04 0.0 0.08 0.07 0.08 0.09
Time{sec.)

Figure 6. Magnetic Bearing Control
Currents for Sliding Mode

Control of Rigid Rotor Subject to
Unbalance
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