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Abstract 

Magnetic bearings with premagnetization can be described as a system either 
with the current as input which can take continuous values or with the voltage as 
input which can take only discrete values because of the used inverter. The con­
troller for the latter has to be nonlinear (cf. Steffani and Hofmann (1997)). One 
method to design optimal controllers with boundaries is the DYNAMIC PROGRAM­

MING of BELLMAN. This paper describes how this method can be used to create a 
switching controller for a magnetic bearing. It is explained how the cost-function 
affects the stiffness. Experimental and simulation results are shown. 

M O D E L OF T H E V O L T A G E C O N T R O L L E D B E A R I N G 

The voltage controlled magnetic bearing with premagnetization showed in figure 1 
described by the differential matrix-equation 
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which means that the system is of 3rd order. The variable s is the deviation of the 
shaft-position, v its time derivative and i s f the current. The ki and k s are the current 
and the position stiffness, which can be taken as constant as well as the inductance L s t 

and resistance R st of the coil. 
The system only allows the negative and the positive DC-link voltage and 0 as 

manipulated value u. This means that the conventional approaches in designing a 
continuous controller like pole-placement, LQR or the root-locus method cannot be 
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Figure 1: Schematic view of a bearing axis 

applied. As the order is greater than 2 it is not possible to design a controller in the 
phase plane too. 

However, the DYNAMIC PROGRAMMING seems to be an interesting method as it 
requires the quantification of the manipulated value which can be done easily. 

DESIGN OF CONTROLLERS WITH THE METHOD OF BELLMAN 

The main idea of the DYNAMIC PROGRAMMING is describing the control process as a 
number of consecutive decisions. Decision means that we have to chose a manipulated 
value out of a number of possible values at each control step. In our special system 
only 2 (±Wdc) or 3 (±u d c, 0) values need to be tested. It is plausible and also can be 
proved (Follinger, 1994, p. 254), that when taking an optimal trajectory every partial 
trajectory is optimal too. BELLMAN stated this as the 

Principle of Optimality. An optimal policy has the property that what­
ever the initial state and initial decision are, the remaining decisions must 
constitute an optimal policy with regard to the state resulting from the first 
decision (Bellman, 1973, p. 87). 

This principle leads, in contradiction to the approach using the MAXIMUM PRINCI­
PLE OF PONTRJAGIN (Boltjanski (1971)), immediately to the optimal feedback control 
law. The aim of optimal control is to minimize a cost functional like 

(2) 
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actual decision remaining policy 
Figure 2: Decision Process 

Initialization of the s-map 

Repeat n times 

For all XQ do 

For all Ui do 
Calculate ^(T, x0, Ui) 

Calculate /""(ac*) 

Calculate / " ^ ( ^ j ) = min^^ 0 ^ + h) 

Store r ^ i x o ) in S-map 

Store u belonging to I n e w in u-map 

Figure 3: Algorithm of the Controller-design with the Method DYNAMIC PROGRAM­

MING. 

with Sfet) being the cost of the state x̂ . on the trajectory from each starting point x̂ , 
to 0. In our case we use the quadratic form 

S ^ ) = x l Q x , (3) 

with a positive definite Q. 
The DYNAMIC PROGRAMMING takes the control process as a multistage decision 

process. Given the principle of optimality, a policy leading to an optimal trajectory can 
be divided into two parts, the actual decision and the remaining policy (cf. figure 2). 
Since we have the choice between several values for the controller output, we have to 
take the one which leads to the state that owns the smallest cost for transferring to the 
goal state. 

The question remains to calculate the cost for each state. This can be done using a 
recursive function 

/feo) = min {S{x 0) + / fe i ) ) (4) 

which can be derived from the principle of optimality (cf. (Bellman, 1967, sec. 3.7)). 
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The problem to solve is how to calculate (4) for each ^ of grid. An iterative ap­
proximation is chosen which is described in figure 3. Two maps1 are built and updated 
several times. The one called I-map stores the cost of each state. It is initialized with 
the values taken from equation 3. An u-map is build to store the manipulated value 
which starts the optimal control-strategy. After repeating this several times the I-map 
is rebuilt taking the old one using equation (4). 

The calculation of both maps are done within a subspace of the state-space. At the 
borders, the problem occurs, that at some points none of the valid values can move 
the state to a destination within the subspace. In this case, the cost I (x\) cannot be 
calculated as a weighted sum of the costs of the three nearest neighbors. Instead, the 
cost of the nearest point within the state-space is taken. 

What are the advantages of the DYNAMIC PROGRAMMING? The first is, that the 
result of the controller design-process is a look-up table, which is a fast but memory-
consuming method for implementing a controller. However, the used DSP has enough 
memory so that this is not crucial. The second advantage is that boundaries of the 
state as well as of the manipulated value can be regarded. In our special case with 
only two or three possible values the method leads straight to an optimal bang-bang- or 
three-position controller. As a third advantage the DYNAMIC PROGRAMMING can be 
used for nonlinear plants as well as for linear plants. 

The often mentioned disadvantage (cf. Follinger (1994)) is the amount of computing 
power of the design process, which is and will be overcome by the increasing computing 
capacity. The algorithm can easily be distributed to several computers which run the 
algorithm in figure 3 for particular parts of the state-space. It has to be taken into 
account that the time-consuming part of the DYNAMIC PROGRAMMING is its off-line 
part which has only to be run once. 

S C A L I N G , W E I G H T I N G , R E C U R S I O N D E P T H AND P R E D I C T I O N T I M E 

Our software is coded in such a way, that it calculates the 5- and u-maps for all states 
within the range [—1,1]- To get a first solution, only a rough choice of the state-scale-
factors is necessary. Also a simple rating of the three states with the same value leads 
to a stable simulation which shows us the way to a better choice of the range. 

As mentioned above a quadratic form is used as cost-function. Principally it is 
possible to use other cost-functions. Because of our implementation, a time-variant 
cost-function is not possible. 

The manipulated value is not weighted because its absolute value is always the same. 
It is common to set only the diagonal values of the weight matrix Q to reduce the effort 
in finding sensible elements. 

Instead of minimizing 

/ = £ ( w ) 0 q'v 0 lv (5) 

1The term map was introduced applying the algorithm to 2nd order systems. 
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Figure 4: Load-step response 
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Figure 5: Control error of a magnetic bearing with 600 N load = 1) 
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which will be minimized by the same trajectories as the original cost function. The 
problem is still how to chose the parameters qa and qv. 

For this paper the states have been scaled to 40/xm, 0.04 and 10 A. Each state 
is divided into 21 steps. This number should be odd to in order to turn each 0 to a 
discrete state. The simplest weights are qs = qv = 1 which means that all values are 
introduced with the same weight. The time to compute the lookup-table is about 136 s 
taking three possible manipulated values and 86 s using two on a DEC 3000. 
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One simulation result is shown in figure 4 using the same parameters as shown in 
table 1. 

The simulated response to a load step is shown in figure 4. This simulation respects 
the dead-time of one step between sampling and output of the manipulated value. As 
well as the measured results, it leads to a fidgety current. The parameters of the design-
process are the weights qs and qv and the prediction time T which is the time between 
two consecutive x and its consecutive state Xji. + 1. 

One crucial figure of a magnetic bearing is its stiffness. Figure 5 shows the position 
error assuming a constant load of 600 N. As the stiffness is calculated by sd = j large 
values signify small stiffness and vice versa. 

It is obvious that the stiffness mainly depends on the weight qs which weights the 
position error while qv affects the damping. It is remarkable that a small weight for the 
velocity does not lead to an overshot but to a drop. This drop disappears if the weight 
of the velocity is increased. 

All step responses do not overshoot which means that the system is heavily damped. 

E X P E R I M E N T A L S E T U P 

A standard induction motor KR 250 S 2 with a nominal power of 75 kW and a nominal 
speed of 3000 m i n - 1 with a 250 kg rotor is used as a test setup. The machine can be 
operated in field weakening to reach higher speed for experimental needs. 

The levitation system consists of two radial bearings and one axial bearing. Each 
radial bearing consists of two perpendicular bearing axes. The bearing system can 
thus control the motion in three coordinates and the rotation in two coordinates. The 
remaining movement around the shaft axis is controlled by the induction motor. 

The two opposite electromagnets are each fitted with a premagnetization coil and 
a second one for the manipulated current as it is shown in figure 1. The coils for the 
manipulated current are connected such, that a positive manipulated current reduces 
the magnetic flux in the one magnet and enhances it in the other one. This configuration 
is known as internal linearization. 

An eddy current sensor is used as measurement system. Its time constant of about 
8/is can be neglected. 

The amplifiers for the magnetic bearings are 50 kHz MOS-FET converters. They 
can either be used with an under-laying current control or the switches can directly be 
driven by the bearing control. In the first case the manipulated value of the air-gap 
controller is the current so it is called a current driven bearing while in the second case 
the manipulated value is the voltage so we call this a voltage driven bearing. 

E X P E R I M E N T A L R E S U L T S 

Figure 6 shows the progression of the axis position and the current using a controller 
designed with the DYNAMIC PROGRAMMING. 

Table 1 shows the parameters which are used for the controller design. 
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Figure 6: Measured Results 

TABLE 1: Controller-design parameters 

Number of quantization steps s, v, ist 21 

Range s ±40^m 
Range v ±0.039f 
Range ist ±9.77A 

Qs 1.125 
Qv 0.625 

Qi 1.0 

Prediction Time (DYNAMIC PROGRAMMING) 0.125 ms 
Sample Time (controller) 0.066 ms 

The shaft moves in an area of ±15/um around zero-position, However this result 
should be improved as other methods (Steffani and Hofmann (1997)) lead to movements 
within a range of ±5/im. 

CONCLUSION 

This paper shows how BELLMAN'S DYNAMIC PROGRAMMING can be used easily to 
design a bang-bang-controller for a voltage controlled magnetic bearing. Due to modern 
computers, the computing time becomes acceptable at least for a linear system with 
three states and a two-point manipulated value. The calculating effort can further be 
reduced by introducing a map to memorize the possible consecutive states for each state 
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and manipulated value. However, this will heavily enlarge the memory used by the 
program. Further it is possible to distribute the algorithm to several computers. This 
is possible by dividing the state-space in several parts for which each step of calculating 
the s- and u-map can be done independently. 

Theoretical investigations have to be done to find out how the depth, i . e. the number 
of iterations of calculating the maps has be chosen and how depth, discretization and 
range of the states are connected. 

P A R A M E T E R S 

k = 190 N / A 

k s = 6.421 - l O ^ / m 

L s t = 3mH 

R = 0.3f2 
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