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ABSTRACT 

A model of axially-symmetric lateral motion of rigid rotor supported by two radial 
sensorless magnetic bearings was reduced to the modal model with complex variables. Next, 
this model was divided into two subsystems connected with two lateral modes: translation 
and rotation. The controller and observer was designed independently for each mode. This 
approach allows to express analytically the controller and observer gains in fimction of 
values of desired closed-loop poles and of plant model parameters. It was appeared that 
gyroscopic effects influences the controller and observer parameters. 

INTRODUCTION 

Depending on measurement system there are a few schemes to control magnetic 
suspension. They are called: current, voltage, magnetic flux, self-sensing, respectively 
(Schweitzer, Bleuler and Traxler, 1993). The self-sensing scheme is the cheapest one 
(Vischer, 1994). In this case the measurement system is reduced to easily realised 
measurement of currents in electromagnetic coils. The elimination of gap sensors causes that 
the rotating machinery structure is more compact. 

Mueller et al. (1996) report on the first ever experiments to suspend a magnetic 
bearing rotor without position sensors in all four radial degrees of freedom. A stable 
rotational speed of 14400 rpm has been reached. Probably the speed limit was caused by 
using of rotor and magnetic bearing model in which the gyroscopic effect, and nonlinearities 
were omitted. 

In this paper the global self-sensing control scheme for the rigid rotor is considered. 
In comparison with Mueller et al. (1996) the gyroscopic effect is taking into account. Since 
the axial movement of the rotor is independent from the lateral one we will analyse the 
control of four-degree-of-freedom lateral (radial) motion. The lateral motion is split into 
motion of two rigid rotor modes: translation and rotation ones what simplifies the control 
system design. Further simplification of the control system design can be obtained by 
introduction of complex variables (Gosiewski, 1997). Using the modal approach the control 
law in the analytical form will be found. 
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MODEL OF THE PLANT 

Usually the rotor and magnetic bearings are axially-symmetric. Therefore, introducing 
the complex variables and using well-established linearized model of self-sensing magnetic 
bearings (Kucera, 1997) we describe the lateral motion of the free rigid rotor as follows: 

mr=Fe+Fs, 

Iyt + jI2n<f>=Me+Ms, 

„ dr, di, 
= i~dt+( 0 + s)~dt+ " 

(1) 

where: m - rotor mass, I x = I y , I z - inertia moments against the axes x,y,z, respectively, Q -

rotor angular velocity, R - coil resistance, L s - leakage inductance, L 0 -air-gap inductance, 

r = r x + j r y , r, = r l x + j r l y , r r = r r x + j r^ , - displacements of the rotor in mass centre, and in 

the (1- left, r -right) bearing planes, respectively, <f> = a + j / 3 - angles of the rotor tilt, 

F e = F e x + jF^ , M e = + jMey - electromagnetic forces and its moments reduced to the 

rotor mass centre, F s = F a + j F v , M s = + j M ^ - external forces and its moments, 
u i = uix + j u i y , u r =w™ h = i i x +J i iy, K = L + Pry - voltages, and currents, in left 
and right bearings, respectively. 

To simplify the 
consideration we assume that 
rotor mass centre has equal 
distance |c| = \d\ from both 
bearings as it is seen in Fig.l. 
It is useful to change co
ordinate <(> by the co-ordinate 
r^-z<f). In the case z = d it is 

= dfi and this co-ordinate is 

located in the plane of right 
bearing. Modal displacements 
can be expressed by the rotor 
displacements in the bearing 
planes: 

c=-d 

Figure 1. Rotor-magnetic bearings scheme with geometrical 
presentation of rotor modal and physical displacements in the left and 
right bearings. 

r "1 - f - i V 
1 1 f r . 

(2) 
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We express the force Fe and moment M e by forces acting in the bearing planes: 

F, = K + F r l M ^ F ^ d - F ^ c ^ 2F^d, where in our case: F^ - F r l = F r m , and 

= F^ . It means that the modal forces generated by left and right bearings are: 

"1 - 1 " - i 

1 1 f r . 
(3) 

Since the modal electromagnetic forces can be presented in the linearized form: 

Frm=K,r + Klirm, 

F^ =K.rA +KJ^ 
(4) 

then the plant model can be split into two modal subsystems. 
I . Translation motion state-space model: 

i , = A j X i + b ^ + b ^ , , 

= c i x i > 

where: x, = [r f z ^ f , u, = f z , = F s m , y ^ i ^ , 

0 1 0 

v2 , ^ = [ 0 0 v J , b z l = A 1 = v, 0 v2 

0 -V3 - v 4 

and. v, = 
2K, 

m 

2K: 

m 
•» V3 = 

0 21m 0 

R 
•,V4 = 

L„+L. 
•> V5 = 

0 0 1 

(5) 

n . Rotation motion state-space model: 

±2 = \2x2+b2u2+bl2f22, 

y2=c2x2. 
(6) 

where: x 2 = 

A 2 = 

0 1 0 

0 -V3 -v4 

2d2K 
and: vs = 

, b2=[0 0 v J , bz2=' 

2d2K 

0 2 ^ 2 / ^ 0 > C2 = 0 0 1 

^,vs=j(I2Q)/Iy. 
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CONTROL OF TRANSLATION MOTION 

The controller will be designed in typical for self-sensing control schemes with a state-
feedback control law and an observer. We assume the control law in the form: 

«, = - k 1 i 1 . (7) 

where: k j = kx k2 k3 is the controller gain matrix. According to the pole-placement 

method we assume the following eigenvalues (poles): px,P2,P3 of the closed-loop system. 

For these eigenvalues the elements of the gain matrix are as follows: 

k 3 = - ( / > i + P 2 +P3 + V 4 ) / v 5 , 

k = PxPi+PxP^+PiP^ , vi -V2V3 k = ^3+v4)-plp2p3 

V2V5 V2V5 

As it results from above formulae if we will choose the poles as real or complex 
conjugate the elements of the gain matrix are also real. It means that the control of the 
translation motion for x and y directions can be designed independently. 

In our case the state equation of the full-order observer is as follows: 

i , = F 1 £ 1 +b 1 M 1 +h 1 ^, (8) 

where: Fj = [A, -hjC,] is the state matrix of the observer. For the chosen eigenvalues 

(poles): pxo,p20,p30 of Fi the elements of the matrix h1 =[hx, h2 h3 are calculated as: 

h3 =-(Pw+P20+P30+V4), 

^ = - ( P I O P T Q + P W P 3 0 +P20P30) + V 2 V 3 - V 1 ^ = ^10^20^30 " V l ( h 3 + ^4 ) 

The elements of the observer matrix are real for real or complex conjugate poles chosen. It 
means that the observer for the translation motion can be designed for x and y directions 
independently. 

CONTROL OF ROTATION MOTION 

Similarly to the translation motion we will calculate the gain matrices of controller and 
the observer to design the control system for rotation motion. The control law has the form: 

u 2 = - k 2 x 2 , (9) 

where elements of the controller gain matrix k 2 = 

poles: p 4 ,p 5 ,p 6 are as follows: 

k4 k5 k6 for the assumed closed-loop 
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^ = - ( / ? 4 + / ? 5 + P 6 + V 4 + V s ) / V 5 , 

, _ P4P5 +P4P6 +P5P6 , V6 - V 7 V 3 - V s ( k 6 + V 4 ) t . V f i C V + V j ^4^5/^6 

V 7 V 5 V 7 V 5 V7V5 V7V5 

Since the value v8 is a complex number the above elements of the gain matrix are also 

complex numbers for any chosen poles. It means that the controller has cross gains between 
the axes x and y in the given bearing plane. 

For rotation motion the state equation of the full-order observer is as follows: 

i 2 = F 2 £ 2 + b 2 M 2 + h 2 ^ 2 , (10) 

where F2 =[A2 -h2c2] is the state matrix of the observer. For the chosen poles for the 

observer: pw,p50,p6Q we have the elements of the matrix h2 = h5 h6 

K=-(P40+P50+P60+V4+V*)> 

u _ PwP* +P4oP6o+ PsoPeo ^ v

8 Q*6 + v 4 ) - v6 + v7V3 _ 
PAOPSOPSO 

"5 - , " 4 , V3 V3 V 6 V 3 V 6 V 3 

Since v8 is a complex number the elements of the matrix lh are also complex 

numbers. It means that to design the observer for rotation motion we should use the cross-
coupled signals measured in x and y directions. 

GLOBAL CONTROL 

Completing the equations (5-10) into one matrix equation we obtain the global model 
of the closed, loop system: 

X 

*> 

A. 

-b.k, 

V , A ^ h . c . - b ^ ! 

0 

0 

0 

0 

0 

0 0 

0 c. 

0 0 

0 0 

A 2 - b 2 k 2 

h 2c 2 A 2 - h 2 c 2 - b 2 k 2 

' b n 0 " 

0 0 
+ 

x 2 
0 b!2 

LX2. 0 0 

It is so called „modar' global system. In this model the modal complex variables: F ^ F ^ are 

inputs while the modal complex variables: i ^ J ^ are the outputs. In the real variables it is a 

four-input four-output system with 24-element state vector. 
The global model can be expressed in the physical complex input and output variables 

(forces and currents in the bearing planes): 



X "A, 

h.c, 

x 2 0 

0 

1 

K 1 1 
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1 - 1 

1 1 

-b .k , 0 0 " x i " b z l 0 " 

0 0 X 2 0 0 
+ 

0 A 2 - b 2 k 2 
X 2 0 b 7 2 

0 h 2c 2 A 2 - h 2 c 2 - b 2 k 2 . X 2 . 0 0 

-1 

c, 0 0 

0 0 c. 

(12) 

We use the same state vector in the modal and physical models of the closed-loop 
control systems. Therefore both models has the similar structure and are presented in Fig. 2. 
There are shown the modal and physical input and output signals (before and after matrix 
transformation, respectively). 

CLOSED-LOOP POLES 

In the case of the pole-placement method for MIMO systems there is a problem how 
to choose the closed-loop poles and control law to save the control energy and to score the 
control aim. It is much simpler to design the control system using the modal approach (SISO) 

which is proposed in this paper. 

Plant Model 1 • 

F, M, 

1 -
1 1 

T'L 

Translation 
Observer 

Rotation 
Observer 

Silverberg and Morton (1989) 
proved that for lightly damped 
systems the modal controlling 
force is near minimal when the 
closed-loop system frequencies 
are kept almost unchanged in 
the comparison to open-loop 
frequencies (in mechanical 
systems it means that the 
vibration modes are kept 
unchanged) while the damping 
of modes (negative real parts of 
the eigenvalues) should be 
chosen to assure the stability 
and proper decay time of the 
transient process. For strong 
damping the optimal 

frequencies are moved in the direction of smaller values. 
From the other hand (Kucera, 1997) has shown that the system is not observable in 

the range of low and high frequencies. Therefore the closed-loop poles should be located in 
the middle frequencies. That range of frequencies is indicated by open-loop poles. 

Figure 2. 
modes. 

Closed-loop system with uncoupled vibration 
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The open loop poles are: + j ^ J - I K j m , -R/ (L 0 +L S ) ; for the translation motion 

, -R/(L 0 + L S ) ; for the rotation motion. The first and: = j 
I , 2 ' y 2 

formula on the rotation motion poles is valid when second component is much smaller than 
first one (it means that angular velocity is low). For higher angular velocities that formula is 
more compound. 

OPEN-LOOP SYSTEM IDENTIFICATION 

The self-sensing magnetic bearings with linear controller are very sensitive to model 
uncertainty. Therefore the model should be carefully identify before the start up phase and 
next periodically identify during the operation. It can be realised by state observer used in the 
control loop. 

In the first stage it is useful to use the position sensor and controller PD2 since the 
open-loop state and control matrices in that control scheme are the same as in the self-sensing 
one. Differences are in the measurement matrices. For example for the translation motion 
there is: 

k i = k + ^ i 

Ci = 1 0 0 

where y is output (displacement) and r is a persistent excitation. 
The identification procedure is as follows. 

• Design of discrete model and replacement of existing observer by dead-beat observer. 
• Experiment and split of the measured signals into their modal parts. 
• Calculation of closed-loop system. Markov parameters between the exciting signal and 

state signals obtained by observers for translation and rotation modes.. 
• Calculation of open-loop system Markov parameters. 

• Calculation of dynamic system realisation (A, B, C}, 

• Calculation of physical system realisation {A, B, C}. 

More details about identification procedure will be presented in (Gosiewski, Falkowski,1998) 
Periodic identification can be realised by observer designed for self-sensing control 

scheme. 

NUMERICAL EXAMPLE 

We assumed that the rotor and magnetic bearings have got the following parameters: 
m = \.%[kgl J x =0m22[kgm 2 ] , J = 0.0024[kgm2], x o = 0.001[7w], ^ = 0.125[w] 
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A-5 /•O=0.35[^], R = n.5[om\, Lo=0.\M[mH] Ls = 0.086[i»ff], ^ = 4.64*10". 

Ki = 64.S[A/ml Ks = 226S[N/m]. 

For non-rotating rotor (Q=0) the open-loop doubled poles are: -64.8, ±j224.5 - for 
translation motion, and: -64.8, ±j538.4- for rotation motion. For rotating rotor with small 
angular velocity a part of poles of the rotation motion are changing according to 
approximated formulae ±j(538.4+Q), ±j(538.4+0.333Q), The number of full-order observer 

poles equals the number of 
plant poles and values of poles 
should assure the faster decay 
of observer dynamics than the 
transient dynamics of the plant. 
The regulator was designed for 
non-rotating rotor according to 
procedure LQR. The closed-
loop doubled poles are: -160.6, 
-112.8±j87.5 -for translation 
motion, and: -349,4, -207.4 
±j 104.2- for rotation motion. 
As we can see the increase of 
damping causes the reduction 
of frequencies of the closed-
loop system with optimal 
control. It agrees with result of 
(Silverberg and Morton, 1989). 

The observer poles are 
assumed as negative real 
numbers with values in the 
range <1200, 2500>. Choosing 
the observer poles we should 
take into account that a part of 
the open-loop poles increase 
with the increase of the rotor 
angular velocity. 

The closed-loop system 
with LQR controller and 
assumed observer was excited 
by step function (voltage: IV). 
The controller and observer are 
designed for non-rotating rotor. 
The rotor displacement caused 
by translation mode excitation 
is shown in Figure 3. Dynamics 

of translation mode does not change for different rotor angular velocities. The rotor 
displacement in bearing plane caused by rotation mode excitation is shown in Figure 4 for Q 
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Figure 4. Rotor displacement in bearing plane to the step excitation 
of rotation mode for Q = 0 [rad/s]. 
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Figure 5. Rotor displacement in bearing plane to the step excitation 
of rotation mode for Q = 1256 [rad/s]. 

= 0 [rad/s] and in Figure 5 for 
Q = 1256 [rad/s] = 12000 
[rev/min]. We see that 
giroscopic effects strongly 
influence the closed-loop 
dynamics. It was found the 
closed-loop system is unstable 
for angular velocities crossing 
the value Q. = 1865 [rad/s] = 
17820 [rev/min]. I f we reduce 
the values of the observer poles 
the system is unstable for lower 
angular velocity. 

CONCLUSIONS 

Sensorless magnetic bearings are desired in many applications. Since they are open-
loop unstable and closed-loop nonminimal-phase the very precise model of the plant is 
necessary in order to find an observer-controller structure to stabilise system. The full model 
(with gyroscopic effect) of rigid rotor lateral motion and of two radial magnetic bearings has 
been developed in the paper. 

Symmetry of bearings and rotor has allowed to reduce the real model to complex 
model with complex variables. Next, this model was divided into two subsystems connected 
with two lateral modes: translation and rotation. The controller and observer was designed 
independently for each mode. This approach allows to express analytically the controller and 
observer gains in function of values of desired closed-loop poles and of plant model 
parameters. It was appeared that gyroscopic effects strongly influences the controller and 
observer parameters. It is desired to design the adaptive control (as a gain scheduling versus 
angular velocity) to adjust the controller. 

Such approach gives us the possibility to shape the rotor dynamics in the desired 
manner. So more there are possibility to obtain the information about external forces and 
moments (for example about inertial excitation in measurement instruments, Gosiewski and 
Falkowski (1996)) acting on the rotor by the measurement of the modal displacement and 
currents in the magnetic bearing planes. 
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