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A B S T R A C T 

This paper deals with modeling, structured uncertainties, /x-analysis and synthesis of a 
magnetic suspension system. First we derive a nominal model of the plant and consider 
its structured uncertainties e.g., linearization error, parametric uncertainties, and neglected 
dynamics. Then we set the interconnection structure which includes the above structurally 
represented uncertainties. Next we design a robust fj, controller which achieves robust per­
formance condition using the structured singular value f i . Finally we evaluate the proposed 
interconnection structure and verify robustness and performance of the designed f i controller 
by experiments. 

I N T R O D U C T I O N 

Magnetic suspension systems can suspend objects without any contact. Increasing use 
of this technology is now utilized for various industrial purposes, and has already applied 
to magnetically levitated vehicles, magnetic bearings, etc. [Sinha, 1987, Schweitzer, 1994]. 
Recent overviews and advances on this field are shown in [Matsumura, 1996]. Since magnetic 
suspension systems are essentially unstable, a feedback control is indispensable. The model 
uncertainties and perturbations make often the systems unstable. On the robust control of 
magnetic suspension technology field, these uncertainties have been treated as the exogenous 
disturbances, and the unstructured uncertainties [Fujita, 1995], however, both uncertainty 
descriptions caused the conservative analytic results for robust stability/performance tests. 
In [Sugie, 1995], parameter perturbations were considered, and the model uncertainties were 
described structurally, but the quantization of uncertainties is not fully discussed. 

In this paper, our novelty is to propose the model and structured uncertainty descrip­
tion of a magnetic suspension system, which contains less conservativeness for robust stabil­
ity/performance analysis. This is concerned with how to construct a set of plant models. 
We consider the parametric uncertainties and unmodeled dynamics and linearization error. 
These uncertainties are structurally described by real/ complex numbers/matrices, and for ro­
bustness analysis, we employ the mixed structured singular value(mixed fj,) test [Young, 1996] 
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440 /^-SYNTHESIS 

to reduce conservativeness. Finally we evaluate the proposed model and the robustness and 
performance of a designed pi controller by several experimental results. 

M A G N E T I C SUSPENSION SYSTEM 

Consider the elecromagnetic suspension system shown schematically in Fig.l. An electro­
magnet is located at the top of the experimental system. The control problem is to levitate 
the iron ball stably utilizing the electromagnetic force, where a mass M of the iron ball is 
1.04kg, and steady state gap X is 5mm. Note that this simple electromagnetic suspension sys­
tem is essentially unworkable, feedback control is indispensable. As a gap sensor, a standard 
induction probe of eddy current type is placed below the ball. 

r E+e 

X+x 

Electromagnet 

Gap sensor 

Figure 1: Magnetic Suspension System (M.S.S.) 

In order to derive a model of the system by physical laws, we introduce following assumptions 
[Sinha, 1987, Schweitzer, 1994, Fujita, 1995]. 

[ A l ] Magnetic flux density and magnetic field do not have any hysteresis, and they are not 
saturated. 

[A2] There are no leakage flux in the magnetic circuit. 

[A3] Magnetic permeability of the electromagnet is infinity. 

[A4] Eddy current in the magnetic pole can be neglected. 

[A5] Coil inductance is constant around the operating point, and an electromotive force due 
to a motion of the iron ball can be neglected. 

These assumptions are almost essential to model this system. Under these assumptions, we 
derived equations of the motion, the electromagnetic force, and the electric circuit as 

( i ) 



Uncertainty Structure and fi-Design of a Magnetic Suspension System 441 

f - k ( I + i 

\X + x + xo 

Ljt+R(I + i) = E + e, 

(2) 

(3) 

where M is a mass of the iron ball, X is a steady gap between the electromagnet(EM) and the 
iron ball, a; is a deviation from X , / is a steady current, i is a deviation from / , E is a steady 
voltage, e is a deviation from E, f is EM force, k, XQ are coefficients of / , L is an inductance 
of EM, and R is a resistance of EM. 

Next we linearize the electromagnetic force (2) around the operating point by the Taylor 
series expansion as 

f u ( 1 \ 2 v J. v • v 2 k l 2 v 2 k I 

f = k y+ , -Kxx + Rit, Kx:=———-Ki\=———v (4) 

From equations (1), (3), (4) and the steady state equations: Mg = k { j ^ r ^ j 2 , R I = E, the 
nominal block diagram of the magnetic suspension system is represented in Fig.2. With the 
nominal model parameters in Table 1, a transfer function of the nominal model is given by 

»(*) = 
-28.9 

(s + 28.8)(s + 78.0)(s-78.0)* (5) 

Figure 2: Nominal linear model for M.S.S. 

Table 1: Model Parameters 

Parameter Nominal Value Unit 

M 1.04 kg] 
X 5.00 XlO" 3 m] 
I 0.789 A] 
k 1.71 X l O - 4 

XQ -1.80 X l O - 3 

M 
Kx 6.27 XlO 3 [N/m 
Ki 25.7 XlO" 4 [N/A 
L 0.859 [H] 
R 24.76 [fi 
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S T R U C T U R E D U N C E R T A I N T I E S 

Note that the model of the plant in Fig.2 was introduced based on several assumptions and 
approximations. This model cannot always express the exact behavior of the real plant. We 
consider model uncertainties between the real physical system and the ideal nominal model, 
and make a set of plant models. Generally, it is well known that the following items are serious 
uncertainties [Paganini, 1996] and we discuss them in the following. 

• linearization error • parametric uncertainty • unmodeled dynamics 

LINEARIZATION ERROR 

There should be model uncertainties caused by linearization of the electromagnetic force 
around the operating point. In Fig.3, current-force ( i - f ) curve at X=5.0mm is plotted in the 
upper figure, and gap-force (x - f ) curve at /=1.15A is in the lower figure, where O denotes 
measured experimental data at each points, and solid curved lines show the determined current-
force curve, and gap-force curve, respectively. The dashed straight lines indicate tangents of 
each curve at the operating points. These inclinations of tangents are employed as K i and 
K x , respectively. The dash-dot straight lines are sectors of the linearization errors. These 
data were measured five times at each point. From Fig.3, the perturbations between tangents 
and curves become bigger if the operating points move from the original points. These errors 
were caused by linearization. Here we employ sector bounds to account linearization error, 
and describe K i and K x as 

Ki = Kio + kfSi, Si £[-1,1], 

Kx = Kx0 + kx6x, 6xe[-l,l}, 

where, K i 0 and K x 0 are nominal values, ki and k x are weights of uncertainties. 

(6) 

(7) 
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Figure 3: Current-Force Curve and Gap-Force Curve 
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PARAMETRIC UNCERTAINTY 

We had better consider the perturbation of a mass of the iron ball M against intentional 
change of the mass and against unexpected exogenous force disturbances. Hence, with a 
perturbation we describe it as 

M = Mo + k M SM, SM € [-1,1], (8) 

where, Mo is the nominal value, and kju is magnitude of perturbation. 

UNMODELED DYNAMICS 

In this section, we discuss the dynamics of electromagnet L * + R . Inductance L and re­
sistance R of the electromagnet have frequency dependent characteristics and their values 
perturb against frequency change, further, measurements of these parameters are very sensi­
tive. Nominal values of L,R are determined as averages of measurements under influential 
10 Hz. Figure 4 shows the experimental data of J ^ R , where solid curved line indicates the 
nominal frequency response, dashed lines are upper and lower bounds. The dynamics of elec­
tromagnet L * + R are distributed in a frequency dependent belt. Furthermore, if the frequency 
of the input signal would change, this belt become broad. We treat the width of this belt in 
Fig.4 as an unstructured uncertainty as below. 

1 

Ls + R LQS + Ro 
+ Wi(s)Ai(s), | A t ( » | < 1. (9) 

where LQ and Ro are the nominal values of L and R, respectively, and Wi(s) = d w + c w ( s l m — 
A u , ) - 1 ^ is a weight of uncertai 
of a width of the belt in Fig.4. 
A™) 1 b w is a weight of uncertainty. The magnitude of weight Wi(s) is determined as one half 

Figure 4: Frequency responses of L*+R 
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SET OF PLANT MODELS 

We take into account of the above three-type uncertainties, and reconstructed the block dia­
gram of the system in Fig.2. The obtained set of models which includes the above uncertainties 
is shown in Fig.5. 

Unmodeled 
dynamics 

Parametric 
uncertainty 

Nominal model 

JB&IJ> 

Ki0 MO. 

K xO 

Parametric Parametric 
uncertainty uncertainty 

Figure 5: Set of Plant Models with Uncertainties 

/x-ANALYSIS AND S Y N T H E S I S 

QUANTIZATION OF UNCERTAINTIES 

In this section, we quantify uncertainties and make a real set of plant models. 

1) CHANGE OF THE OPERATING POINT We consider a structurally represented un­
certainty caused by a change of the operation point. In this system, the operating point is 
characterized by a steady state gap X { X \ 3.8 < X < 6.2}. 
2) PERTURBATION OF Ki AND K x Change of the operating point X causes the other 
perturbations of parameters, K i and K x . In this case, parameters K i and K x perturb as 
14.1 < K i < 37.3, 5.38 x 103 < K x < 7.16 x 103 (3.8 < X < 6.2). Then we describe Ki and 
K x as below. 

Ki = 25.7+ 11.6-tf,-, £ € [ - 1 , 1 ] , 

K x = 6.27 x 103 + 8.90 x 102 • 6X, ^ € [ - 1 , 1 ] . 

(10) 

(11) 

3) DYNAMICAL UNCERTAINTIES An uncertainty in the electromagnet j ^ L - should be 
also considered. We set the parametric uncertainty of L and R as 0.782 < L < 0.936 (9% 
perturbation) and 24.5 < R < 25.0 (1% perturbation). In addition to the above parametric 
perturbation, we should take into account of unmodeled dynamics in the high frequency range. 
Using FFT analyzer, we measured them. Finally, we decided a set of electromagnetic dynamics 
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Ls+R as 

Ls + R 0.859s + 24.8 + 
1.28 x 10-3(s + 3.20)(* + 900) 

(«+ 25.8)(a + 31.4) 
Aiis) , | A , ( » | < 1 . (12) 

From the above discussion in these three subsections, the final quantity of uncertainties are 
selected in Table 2, where 7% perturbation of mass M is considered in this case. 

Table 2: Quantity of uncertainties 

Value Value 

ki 11.6 kx 8.90 x 102 

kM 7.25 x IO" 2 
Wi(s) 

1.28 x I O - 3 (s+3.20) (s+900) 
(s+25.8)(s+31.4) 

DESIGN 

Utilizing the structured singular value f i [Balas, 1993][Stein, 1991], we design the controller 
which achieves robust performance against various types uncertainties. We construct an in­
terconnection structure by LFT representation in Fig.6, where W p e r f is a performance speci­
fication and also is a weight for a sensitivity function S : = ( I + G n o r n i i ' ) _ 1 . W p e r f is given 
by a following equation. 

Next, for the robust performance synthesis, we define the block structure A as follows. 

A := {6ia,g[Si ,6 x ,6 M ,Ai ,A p e T f ] : Si,Sx,6M € R, A i , A p e r I € C}. (14) 

The structured singular value ^ ^ ( M ) is defined for matrices M £ c n x n with the block 
structure A as 

HA(M) := z (15) 
mm{(7 (A) : A G A , det(J - M A ) = 0} 

unless no A G A makes ( / - M A ) singular, in which case n&(M) :— 0. 

We then have: 
- The closed loop system will have robust performance, i.e., it will be robustly stable and 

sup H/s\Fi(P(3u),K{3u)){Ju3)] < 1. 
wen 

(16) 

We apply standard D - K iteration to find the sub-optimal pt controller for the system. We 
thus iteratively solve the following problem: 

sup inf m D i j ^ F ^ P i j u l K ^ i j ^ D - ' U u ) ) } < 1. 
u€RD(w) 

(17) 

After the 3rd iteration, we obtained a controller K(s), where the supremum of fj,^[Fi(P,K)] 
is 0.9766. Final scaling matrix D(s) has 12 states, then K(s) has 30 states. We employ the 
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Figure 6: Interconnection Structure 

Hankel norm approximation technique to calculate the reduced order system of K(s). Final 
balanced controller ^(s) is as follows. The supremum of the //^[F/(P,^r)] is also 0.9766. 

K(s) = 
3.27 x 10 1 0 x (s + 486 ± 885t)(3 + 389 ± 626i)(s + 335)(g + 79.1) 

(s + 1740)(a + 949 ± 1320<)(* + 472 ± 794i)(s + 391 ± 5990 
(s + 29.5)(a + 14.7)(a + 4M){s + 2.63)(s + 0.175)(3 + 0.114) 

(s + 348)(5 + 8.16)(« + 2.66)(s + 0.210)(s + 0.127)(s + 0.0778) 
(18) 

A peak value of the upper bound of f i is less than 1, then the closed-loop system with 
considered uncertainties achieves the robust performance condition. This result shows K(s) 
guarantees robust performance against uncertainties caused by a change of operating point 
{ X | 3.8 < X < 6.2}. 

E X P E R I M E N T A L E V A L U A T I O N 

In order to evaluate the design process, we implement the obtained controller K(s) via a 
digital controller, and carry out experiments. The sampling period of the controller is 95/xs, 
and a well known Tustin transform was employed for discretization. All experimental results 
which show a position of the iron ball are shown in Fig.7. 
Evaluation of Nominal Performance 
Step response of the position x of the iron ball at X =5[mm] (nominal steady gap) is shown in 
Fig.7(a), which indicates the stable levitation with the controller K(s) at the nominal steady 
gap X = 5.0 mm. The magnitude of the step-type disturbance is 22 N, which is twice as much 
as steady state force. Since it is difficult to give disturbance forces to the iron ball directly, 
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we add pseudo-disturbance by applying voltage signal to the control input signal. This figure 
shows that the nominal performance is fully achieved. 
Evaluation of Robust Stability 
Time responses of the controllers k ( s ) are shown in Fig.7(b), which indicate the stable levita­
tion at the steady state gaps X = 1.3, 5.0, 8.7 mm. These lines show that the robust stability 
against the perturbation of X (1.3 < X < 8.7) is achieved. I f we change the steady state gap 
X to less than X = 1.3, or greater than X = 8.7, then the system disappointingly gets into 
unstable. 
Evaluation of Robust Performance 
For the verification of the robust performance test, we measured time responses against a 
step-type external disturbance (22 N) at the steady state gaps X — 3.8, 6.2 mm. Results are 
shown in Fig.7(c). 

From this result, i t can be seen that the controller K(s) shows enough performance compar­
ing the response in Fig7(a). We have confirmed K(s ) achieves the robust performance against 
model perturbations caused by a change of operating point { X \ 3.8 < X < 6.2}. 

C O N C L U S I O N 

In this paper, we proposed the novel set of plant models of a magnetic suspension system 
considering structured uncertainties. We transformed the obtained model to the LFT repre­
sented interconnection structure with the structured mixed uncertainty. Next we designed a 
robust controller by //-analysis and synthesis which achieves robust performance criterion using 
the structured singular value p,. Finally we evaluated the proposed interconnection structure 
which contained the structured uncertainties, and also verified robustness and performance of 
the designed p, controller by experiments. 
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Figure 7: Experimental Results 
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