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ABSTRACT 

This paper deals with the robustness analysis of the active magnetic bearing suspension. First, 
finite element method is used to find the variations of the bearing parameters. Based on this 
analysis, a plant description is proposed, where the uncertainties are modeled as uncertain 
"almost" diagonal and real gain matrices. For the robustness analysis, a special way of 
constructing a generalized Nyquist diagram is proposed. This diagram gives nonconservative 
stability margin predictions and is a useful tool for synthesis purposes. Finally, the test 
machine is analyzed using the proposed method. 

1 INTRODUCTION 

Even thought active magnetic bearing (AMB) suspension is open loop unstable, it is usually 
quite easy to achieve stable suspension at some nominal conditions. However, when the AMB 
is designed for series production, the situation becomes difficult. The performance demands 
are high and the one and only control system should handle all the machines operating at 
different operational conditions and having slightly different parameters due to manufacturing 
tolerances. Careful testing and powerful analysis tools are needed to ensure robustness. 

There are many kinds of AMB applications and accordingly the most important performance 
objectives and parameter variations are different. Fittro et al. (1996) have successfully used jx-
synthesis to achieve a controller for spindle AMB. Worst case point compliance minimization 
in the case of elastic rotor is an extremely challenging task in which very powerful synthesis 
method is needed. This particular application field is suitable for p,-synthesis also because the 
performance objective is clear and easy to formulate mathematically. The |i-synthesis, 
however, leads to high order controllers and in many easier applications the performance and 
robustness increase is only marginal compared with a well designed low order controller. 

In the subcritical low pressure compressor applications (Antila et al., 1996), such as our test 
machine, the performance demands can not be formulated so easily into mathematical form. 
The main demand is that machines tolerates well all the disturbances and rotates smoothly in 
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the whole speed range. In practice, it has been seen that this performance objective is 
achieved, when the AMB open loop has a certain "shape". This means that the gain and phase 
margins are sufficient, the gain and phase crossover frequencies are suitable, the high 
frequency gain drops fast enough, the low frequency gain is high enough, etc. In SISO (single 
input single output) case these measures are readily seen from open loop frequency domain 
plots like Nyquist diagram, Bode diagram and Nichols chart. Also, these frequency response 
plots are useful in improving the design because the effect of controller modifications into the 
open loop frequency response is very straightforward. It is tempting to extend these methods 
to multivariable plants, because these methods have proven very useful, easy to use and 
intuitively clear in SISO case. In this paper, a new way of constructing a generalized Nyquist 
diagram is proposed and successfully used to design an AMB controller. 

2 BEARING MAGNET ANALYSIS 

In this Section, the behavior of the bearing magnets is analyzed. The analysis is concentrated 
on the parameters of the linearized bearing model. A minimum demand considering 
robustness is that the linearized system works well. The stability at large signal amplitudes is 
no less important and could be theoretically studied by simulations with a nonlinear model, 
and using describing function method. In the present paper, large signal amplitudes are 
consider only in the experimental testing. 

In this paper, the finite element method is used to compute the linearized parameters (Antila 
et al. 1998a). Finite element method is reliable also with saturated magnetic circuit. In Figure 
1, the bearing force is computed as a function of the control current for three different airgaps: 
0.45 mm, 0.5 mm and 0.55 mm. These are considered as minimum, nominal and maximum 
airgap. The variations are due to the thermal enlargements and manufacturing tolerances. The 
small discrepancy between the measured and computed curves is due to material data. 

The derivative of the bearing force with respect to control current is also shown in Figure 1. 
This is called current force coefficient. As seen, the current force coefficient depends 
considerably on the airgap and load. This is considered as the most important parameter 
variation in the AMB system. The nominal value is the mean of the maximum and minimum. 

The negative stiffness coefficient has also quite high variations. From experience, it is 
known that under high load the rotor starts to oscillate at low frequency. This is due to the 
drop of the ratio between current force coefficient and negative stiffness coefficient. Thus, the 
nominal value for negative stiffness coefficient is chosen so that ratio between smallest 
current force coefficient (110 N/A) and nominal negative stiffness coefficient equals the 
correct ratio between these at the most loaded conditions. This leads to £p=1.3*106 N/m. 

The dynamic inductance Ldyn (t/=Ldyn*d//d0 decreases rapidly as the load increases. This is 
not so serious, because the fast current control loop effectively compensates the variations in 
the dynamic inductance. The uncertainty in the dynamic inductance can be described by small 
phase errors in the current force coefficient. 

Large cross-connections between X-direction control current and Y-direction force, and vice 
versa, would obviously cause problems in the control. The authors have found out that the 
bearing pole configuration has a remarkable effect on this cross coupling and the NSNS-pole 
configuration is clearly better in this respect. In the NNSS-configuration, about 50 % cross-
connection is present at the highly loaded condition. In the NSNS-configuration the cross-
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connection is at worst about 15 %. A minor drawback with the NSNS-pole configuration are 
slightly higher friction losses, due to eddy currents. However, according to the measurements 
made by the authors, and others, this increase is small, only of the order of 10 %. 
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Figure 1. Current-force relationship and the linearized parameters with different airgaps and 
loads. Nominal airgap: bold line, small airgap: dotted line, large airgap: solid thin line. 

3 THEORETICAL ROBUSTNESS ANALYSIS 

The system layout for robustness analysis is shown in Figure 2. 
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Figure 2. System layout for robustness analysis. 
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The displacement sensor is an inductive type sensor with excellent linearity and negligible 
cross-connections. The sensitivity is practically the same in one end X-and Y-directions, but 
may differ from its nominal value by 10 %, due to manufacturing process. So, Ks is a diagonal 
matrix, whose diagonal elements are real and in the range [0.9,1.1] and ̂ 1,1=̂ 3,3 and 2̂,2=̂ 4,4-

As seen in the last section, the bearing has a remarkable uncertainty, which can be described 
by an almost diagonal uncertain gain matrix KB. Based on the finite element analysis, the 
diagonal elements have absolute values in the range [0.5,1.5] and small phase. The eddy 
currents and hysteresis cause approximately 5° phase lag (Antila et al., 1998b) and the 
variations in the dynamic inductance may cause small phase lead or lag. Due to the magnetic 
cross-coupling, there are small nonzero elements in the locations (1,3), (3,1), (2,4) and (4,2). 

METHODS FOR ROBUSTNESS ANALYSIS 

For robustness analysis, the structured singular value (|i.) is a powerful tool (originally 
introduced by Doyle 1982). Structured singular value is considered in many textbooks, see for 
example Maciejowski (1989), Skogestad and Postlethwaite (1996) and Zhou et al. (1997). By 
.̂-analysis, very nonconservative statements can be made of the stability and performance 

robustness. In principle, there is no conservativeness, due to the definition of the \ i and in 
practice the numerical upper bounds are close to the correct values. Today, reliable software 
exists for computing \ i . The authors have used |i-analysis to check their designs and 
unquestionably it is a very useful and powerful tool. However, the authors have searched for a 
method, which would offer also some kind of quidance in the synthesis and intuitive feeling 
of when the design is good and still be nonconservative in the stability margin predictions. 

As noted in the introduction, the open loop frequency response methods have proven very 
useful in SISO controller design. Also for multivariable case similar analysis and design 
methods have been developed. These "classical" frequency domain methods are collected in 
the book of Maciejowski (1989). Frequency domain stability analysis is based on the 
Generalized Nyquist criteria: Let the open loop transfer function matrix be G(s) (negative 
feedback convention). The closed system is stable if the characteristic loci of G(s) encircles -1 
Np times anticlockwise, as s encircles the right half plane. Np is the number of right half plane 
poles of G and characteristic loci means a plot of the eigenvalues of G as a function of s. 

The characteristic loci does not generally give any information of the robustness. It is 
difficult to predict how the characteristic loci will deformate when the parameters change. An 
obvious improvement is to compute at every frequency a template for every eigenvalue by 
changing the unsure parameters over their ranges. In practice, it may be difficult to compute 
these templates, especially, as the borders of the templates are not in general achieved at 
bounding parameter values. If the system is diagonally dominant, a generalized Nyquist-
diagram with Gerschgorin bands may be useful. There is also a method for finding a diagonal 
scaling matrix that gives optimally thin Gerschgorin bands (Mees 1981). Postlethwaite et al. 
(1981) proposed principal phases to be used with principal gains to draw "principal regions" 
into the Nyquist-diagram. Then, certain robustness statements can be made. 

The authors have tested all the previous methods in the case of AMB. Sometimes the 
methods are useful, but often the predictions will be too conservative. For example, some 
AMB systems have very small offdiagonal elements. In such case, the Nyquist-plot with 
Gershgorin bands is useful, giving highly noncorservative results. Generally, the nondiagonal 
elements are not small and they can not be made small by diagonal scaling. It seems to be that 
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in a well designed AMB system the open loop is not necessarily diagonal near the cross-over 
frequencies, but it is near normal (matrix A is called normal if A H A=AA H ) . Even though the 
normality is considered as a nice property of a control loop (Maciejowski 1989), it is not so 
obvious what is the actual benefit in the case of AMB. Actually, this conclusion can be made 
just after quite tedious analysis. Only the main ideas are explained in the following. 

For normal matrix the largest and smallest singular values are the largest and smallest 
absolute values of its eigenvalues and with skew matrix they are bigger and smaller, 
respectively. In a multivariable plant, the closed loop eigenvalues are not a good measure of 
performance, but the singular values are. By some analysis, it can be found out that near the 
gain and phase cross-over frequencies, the largest singular values of the sensitivity function 
and the complementary sensitivity functions at the plant input and output are good measures 
of performance. None of these should not become too high. As the closed loop frequency 
response functions are normal if and only if the open loop is normal, the largest singular 
values are easiest to keep small when the open loop is normal. Because the open loop 
eigenvalues suffer from the same phase-gain relationships as the gain and phase of a scalar 
plant, it will be difficult to compensate the lost performance by shaping the characteristic loci. 
Further, normal open is optimal considering robustness against certain type of perturbations. 

NEW GENERALIZED NYQUIST DIAGRAM 

Let K be the unsure, almost diagonal gain matrix and LQ the nominal open loop frequency 
response matrix (negative feedback convention). The open loop frequency response matrix is 
then KLo and the eigenvalues of the open loop are obtained from the eigenvalue problem 

K L 0 v „ = A n v „ , (1) 

where ^ is an eigenvalue and v n is the corresponding eigenvector. Equation 1 is now 
multiplied from left by K _ 1 and v" and divided by v " K _ 1 v n . This leads to 

v"v„ v " L n v , 

v M K~ 1 v v H v 

where v"L 0 v„ / v "v n is called Rayleigh fraction in the literature. The idea is to use Equation 
2 to estimate, where the open loop eigenvalues travel when the matrix K varies. The problem 
is that we do not know how the eigenvectors behave when K changes. Because of that the 
vector v n is allowed to be any vector x, not necessarily an eigenvector. Then we can say that 

[ab, a e cp(L0), b e ^ K " 1 ) } , ^ L o ) = { ^ - X - - - N x l 

-iP^,xeCN X 1x*0 
X X 

(3) 

0(K) = \-^ —, x e CNxl x * 0, K e {"allowed variations"}\, 

where <p(L0) is called the eigenvalue region of LQ and 0(K) is called the gain set of K. 
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It is relatively easy to prove that(p(A)is a convex set in the complex plane. This convexity 
property is useful in computing the region numerically. Tangent lines are computed in a 
number of directions a (see Figure 3). To obtain the upper and lower tangent lines, compute a 
hermitic matrix P = ( e _ ' a L 0 +e ' a Lo) /2 . Then a and b (see Figure 3) are the most negative 

and positive eigenvalues of P, respectively. To get an accurate approximation, about 20 angles 
between -90° .. 90° is enough. From these tangent lines, the approximation of the region can 
be constructed. A remarkable property of the eigenvalue region is that if matrix A is normal 
then the region (p( A) is bounded by line segments connecting the outmost eigenvalues of A. 

This is illustrated in Figure 3. The plot of these eigenvalue regions <j9(L0) at a sufficient 

number of frequency points is the generalized Nyquist-diagram proposed in this paper. 
Let us next analyze, how does the gain set0(K) look like. If the matrix K is diagonal, with 

real diagonal elements limited in the interval [c,d], then0(K)=[c,d]. In the case of AMB, the 
postulated variation range is between 0.5 and 1.5. If K is diagonal, but its elements have small 
phase errors, then the maximum phase of the elements of 0(K) equals the maximum phase of 
the diagonal elements. Let K be a real 2x2 matrix, with positive diagonal elements and small 
offdiagonal elements. If the absolute value of the larger offdiagonal element is smaller than 
k* smaller of the diagonal elements then the maximum absolute value of the phase of the 
members of 0(K) is argtan(fc). Thus, 15 % cross-connection means at maximum 8.5° phase. 
A physical explanation for this phase angle is that the cross-connections modify the spatial 
phase of a rotating force vector. Note that KB consists of two 2x2 blocks, so the previous 
reasoning holds for KB. The gain set 0 (K B ) is sketched in Figure 3. 

numerical computing set cp for set q> for skew matrix 
of the eigenvalue region normal matrix ' ^ r X 
imagA . ^ \ « * ̂  i«ittr f i t j | 

>. real 

gain set 0 (K B ) 

Figure 3. Numerical computing of the eigenvalue region (p and a example region for normal 

and skew matrix. In the real axis the gain set0(KB) is shown. 

As the matrix LQ is not necessarily normal, a question arises, whether it is possible to find a 

similarity transformation D that would make it more normal. It is easy to see that 

p [ K L 0 ] = p[(DKD _ 1 ) (DL 0 D
_ 1 ) ] where p[A] means the set of the eigenvalues of A. Let us 

introduce a "structured" eigenvalue region as follows 
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x H D L D _ 1 x 
<p s(L 0) = \ n j £ , x e C N x l x * 0 ,D E" allowed scalings" \, (4) 

x x 

where "allowed scalings" is a set of invertible matrices, which commutes with all allowed 
K:s, i.e. KD=DK, or K = D K D - 1 . The eigenvalue region can be replaced by this structured 
eigenvalue region, if the conservativeness should be minimized. 

The computing of this structured eigenvalue region is more tedious than the original version 
and in the case of many free parameters in D it is quite difficult (it comes very close to \ i -
computing). However, in the present case we demand that (ii,1= 3̂,3 and 2̂,2=̂ 4,4, because KB 
has small off-diagonal elements. Further, we can set 1̂,1= 3̂,3=1, because multiplying the 
matrix D by a constant does not change matrix D X D - 1 . So, we have only one free parameter 
^= 2̂,2= 4̂,4, which can be further restricted to be real positive number. 

The small uncertainty in the sensor sensitivity is taken into consideration by computing the 
union of the eigenvalue regions ^ ( G C K S G R G B ) when Ks achieves all allowed variations. As 

this union is no more convex, it is approximated by the smallest convex region containing it. 
This is not so tedious, because the sensor sensitivity can be parametrized by two real 
parameters and the Rayleigh fraction building the eigenvalue region is then a linear 
combination of these parameters. So, it suffices to compute the smallest convex region that 
contains the four regions achieved with the four bounding parameter combinations. 

4 ANALYZING THE TEST MACHINE 

The proposed generalized Nyquist diagram was used to analyze the test machine. In the 
computations, a ± 10 % variation was assumed for the displacement sensor sensitivity. In 
Figure 4, the Nyquist diagrams for zero and maximum speeds are shown. Only the positive 
frequencies are drawn, because the diagram is symmetric relative to real axis. The circle in 
Figure 4 is centered in -1 and its radius is 0.5. It is a kind of a performance circle. To achieve 
good performance, the regions should not penetrate inside the circle too much. From Figure 4 
the designer sees that the control system is tolerable, but not the best possible. At frequencies 
near the bending mode the structured version is used to decrease the conservativeness. 

At zero speed, the system tolerates 50 % decrease in the current stiffness. The test machine 
has the current stiffness very near the nominal value as can be seen in Figure 1. The drop in 
the current stiffness was simulated by dropping the controller gain at the controller output. In 
practice, the system tolerated exactly 50 % drop. However, the machine could be run over the 
rigid body resonances, just after the gain was more than 70 % of the nominal. At lower values 
the vibrations caused by electric motor became too high at low speed. This can be predicted 
from Figure 4. If the Nyquist-curve is scaled by 0.7, it will go clearly inside the performance 
circle. So, the static gain of the control loop should be increased about 50 %. 

Then we tested the increase in the gain. The Nyquist-curve predicts that the system tolerates 
slightly more 100 % increase. In practice, we could increase the gain by 120 %. However, 
with more than 100 % increase the rotor started violently oscillating when hammered. So, the 
system was no more stable in large signal amplitudes. This effect is due to power amplifier 
saturation and is studied in detail by Satoh et. al (1990). With more than 80 % increase, 
amplifier saturation occurred when the machine was driven over rigid body resonance speeds. 
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Again, this can be predicted from the Nyquist-diagram. If the curve is scaled by 1.8, it will 
penetrate clearly inside the performance circle. 

So, we should increase the controller gain at low frequencies and slightly decrease the gain 
at the phase cross-over frequency. The Nyquist-diagram reveals that this is difficult to achieve 
with the present controller structure, because the eigenvalue regions are oblong and pointing 
to origin. To get the closest point far enough from the origin at low frequencies, the furthest 
point goes very far. To improve the design, we should separate the controller into translatory 
and rotary mode controllers. Then we would have direct access to both eigenvalues. 

speed 0 Hz, low frequencies speed 0 Hz, f i r s t bending mode 

-3 -2 -1 0 
r e a l 

speed 833 Hz, low frequencies 

- 3 - 2 - 1 0 1 2 3 
r e a l 

speed 833 Hz, f i r s t bending mode 

r e a l 

Figure 4. Generalized Nyquist diagram for the test machine. At the left, the diagram is drawn 
for low frequencies: 5, 10, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 250, 300, ... 800 Hz. 
The exact hundreds are filled with black. In the right hand side plots, the frequency range was 
from 800 Hz to 1100 Hz with 1 Hz step. 

The first bending mode is stable at zero speed and both the forward and backward modes are 
stable at maximum speed. The size of the curves near the bending mode depends on the modal 
damping, which was assumed 0.003. However, the system remains stable even if the damping 
is smaller. However, a 30° phase lead at the bending eigenfrequency could destabilize the 
bending mode. This phase lead could be due to decrease in the dynamic inductance at high 
loads. So, the controller phase should be dropped slightly lower at the bending mode 
eigenfrequency. With the present controller structure it may be difficult to achieve. To adjust 
the phase more effectively, we should introduce a complex pole zero pair into the controller. 
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5 CONCLUSIONS 

When designing AMB system for series production, a special attention has to be put on the 
robustness. The designer has to find out how the process dynamics may be changing due to 
operational conditions and manufacturing tolerances. It was found that the most remarkable 
uncertainty is the current force coefficient. The uncertainty can be described by an almost 
diagonal and real gain matrix. For theoretical analysis, a special generalized Nyquist-diagram 
was proposed. This diagram is a nice generalization of the SISO-Nyquist-diagram. It gives 
highly nonconservative robustness estimates in the case of AMB and serves as a synthesis 
tool. The theoretical analysis based on a linearized model is a kind of minimum demand. In 
experimental testing these stability limits should be checked also with high signal amplitudes. 
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APPENDIX: PARAMETERS OF THE TEST MACHINE 

The test machine is a 100 kW 50000 l/min. air compressor prototype for waste water 
treatment. The rotor mass is 40 kg and motor diameter 115 mm. The radial magnetic bearings 
are conventional 8-pole bearings. Stator packet length is 50 mm, outer diameter 180 mm and 
slot diameter 150 mm. Rotor diameter is 74 mm, shaft diameter 53 mm and nominal airgap 
0.5 mm. Number of turns is 100 per pole and pole configuration is NSNSNSNS. Bias current 
is 2 A, amplifier maximum current 10 A and amplifier voltage 150 V. Static load capacity is 
850 N in weakest direction, the nominal current force coefficient is £c=220 N/A, the nominal 
negative stiffness coefficient is fci>=1.3*106 N/m and the nominal dynamic inductance is 
Ldyn=42 mH. The bearing model is 

fBc(*) = G B W M > G B ( J ) = diag{G B 1 ,G B 1 ,G B 1 ,G B 1 }, GB l(s) = * c * ' , (Al) 
LdynS + lcI 

where ki is the current feedback coefficient =75 V/A, I r e f is the reference control current and 
fBc is the controlled bearing force. The rotordynamic model is 

Cs 0" 'Ms2 + Ds + K-BbkPBl QGs + QD 
- i 

B b 0-

0 C s -Q,Gs - QD Ms2 + Ds + K-BbkPBl 0 B b 

Ps(*) = GR^KBCW 

GR(*) = 

where ps is the position measurement vector. The rotordynamic matrices are 

M = diag{40.7,1.22,0.99}, K = diagjo, 0,37.5 * 106 } , D = diag{0,0,35}, 

(A2) 

G = 

0 0 0 

0 55 0.86 

0 0.86 145 

10- 3 ,B b = 

1 1 

0.26 -0.27 

0.084 0.17 

> C s — 
1 0.30 0.25' 

1 -0.31 0.27 

(A3) 

For details of the rotordynamic model, see Lantto (1997). The position controller is 

IKf(s) = Gc(s)ps(s),Gc(s) = 
0 1 0.361 

Gcl(s)_ 
,GC](s) = 

0.36 1 J 

GC 2(s) 0 

0 GC 2(s) 

18300 1 + -
0.155 + -

405 

0.00025 + 1 

3500̂  

52 +10505+ 35002 

(A4) 


