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ABSTRACT 

The dynamic properties of magnetically levitated pumps are determined to a large extent by 
the characteristics of their seals. These vary with throughput, pressure, and rotational speed 
and are not precisely known. Robustness of the AMB controller with respect to these plant 
variations and uncertainties is therefore a crucial issue. 

(X-Synthesis is well suited for such control problems. Two points remain critical for 
practical applications: First, there is the choice of an uncertainty model that captures all 
uncertainty without being overly conservative. The second point is the selection of suitable 
weighting functions that express the size of the model uncertainty, system limitations, and 
performance goals and can be used in the controller design process. 

In this paper, the robust controller design for a 3 MW boiler feed pump is presented (Losch, 
1997). The dynamics of this pump are discussed, and a special model reduction technique 
appropriate to these dynamics is presented. A systematic way for transforming the robustness 
and performance requirements to the (X-Synthesis setting is described. As the core of the paper, 
a new theorem for determining suitable weighting functions is developed and applied to the 
AMB pump. The controller designed on this basis proves to meet the specifications. 

INTRODUCTION 

THE PUMP 

Pumps equipped with magnetig bearings offer a wide variety of advantages over 
conventional pumps. Among them are higher efficiency, lower maintenance and total costs, and 
the availability of status information. Figure 1 shows a cross-sectional view of the AMB pump 
considered. This pump was constructed in a diploma thesis in cooperation with the pump 
manufacturer KSB, Frankenthal (Ramb, 1994). It is a 5-stage centrifugal pump with a rotor 
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Figure 1: Cross-sectional view of the pump 

length of 1.84m and a rotor weight of 220kg. It has a maximum power of 3MW and runs at a 
nominal speed of 6000rpm. The large axial thrust which is produced by the five impellers is 
counteracted by the balance piston near the high pressure end of the rotor. At the pump's outlet, 
there is a throttle that allows to adjust the throughput in a range from 0.19 to 1.2 times its 
nominal value. 

Modes of Operation 

Two different modes of operation can be distinguished: 
• Normal operation: Variable throughput q, constant (nominal) speed U 
• Run-up/run-down: Variable speed U, constant (low) throughput q 

The run-up/run-down mode is relevant only for taking the pump into, or out of, service. In 
order to reduce the robustness requirements in favour of better performance, two different con
trollers have been designed for the two modes (gain scheduling). In this paper, we focus on the 
controller design for normal operation. 

Seals 

At ten different locations, the pump contains seals. There is one seal located on the low 
pressure side (right hand side) of each impeller. To the left of each of the four rightmost 
impellers, there is one additional seal. Finally, there is another seal on the balance piston near 
the high pressure end of the rotor. This seal is very long (about 200mm), and all of the pressure 
(up to 250bar) produced by the pump is acting on it. When the rotor rotates, the seals 
drastically influence eigenfrequencies, related damping, and eigenmodes of the pump. 
Moreover, they cause a coupling between the motions in the two radial planes. In particular, the 
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Figure 2: Framework with reduced plant, multiplicative uncertainty, and weighting fiinctions 
Note that all signals are vectors with 4 elements. 

influence of the long seal at the balance piston is huge. Its mass coefficient, for instance, is 
twice the rotor mass. The seals' mass, damping and stiffness coefficients vary with throughput, 
pressure, and rotational speed (Diewald, 1989). The related robustness requirements are a 
central issue in controller design for AMB pumps. î-Synthesis is well suited for this problem. 

^-SYNTHESIS 

(X-Synthesis (Balas et al., 1995; Zhou et al., 1996) is a method for designing controllers 
which guarantee that performance specifications are met not only for the nominal plant G but 
also for all plants G which differ in a certain limited way from G (robustperformance). This 
capablitiy makes ^-Synthesis a very powerful tool, since it is able to put an end to the 
widespread trial and error in classical control. The method consists of the following steps: 

1) Definition of the structure of the framework for the controller design (the so-called 
extended plant), such that all relevant aspects regarding performance criteria and plant 
uncertainty are captured. An example is shown in Figure 2. 

2) Definition of appropriate frequency-dependent weighting functions W(s) for 
quantification of the plant uncertainty and of the performance goals corresponding to 
the criteria mentioned above. 

3) Computation of a controller matching the performance and robustness specifications. 
This is done using the D-K-iteration which forms the computational core of the method. 

Theory regarding step 3 (D-K-iteration) is well elaborated and supported by powerful 
software tools. However, little literature and guidelines exist regarding steps 1 and 2 where the 
real-world problem and its specifications should be transformed into the ^-Synthesis 
framework. Consequently, the control engineer is left alone with this important task. This 
seems to be a main reason why |i-Synthesis enters the area of real-world applications very 
slowly. In the following, we present a formalized way to approach this transformation. 
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THE MODEL 

The dynamic model of the pump was derived as a combination of the models of its com
ponents, i.e. the rotor, the seals, and the magnetic bearings. The rotor was modelled using the 
Finite Element method. To account for the complex geometry and the large number of force 
insertion points (seals, impellers, bearings), 39 nodes had to be considered in the model (156 
degrees of freedom). The impellers have been modelled as rigid disks. For the AMBs, a linear 
model was assumed (Schweitzer, 1994). 

The rotor-stator interaction at the seals was described using a linearized dynamic model of 
order 2. The related mass, damping and stiffness matrices in this model are skew symmetric. 
The coefficients were calculated for different values of throughput, pressure, and rotational 
speed. Special software packages for this purpose are available for various types of seals 
(Diewald, 1989). 

Since the throughput q varies during normal operation, a whole family of linear models is 
needed to describe this mode of operation. The models for six distinct values of q were chosen 
to represent this family (q = 0.19, 0.38, 0.54, 0.77, 1.0, 1.2). It is reasonable to assume that a 
controller that robustly stabilizes all of these plants will also robustly stabilize the plant at all 
other values of q and thus solve the given control problem For each of the six operating points, 
a state space model of the complete plant including rotor, AMBs, and seals was derived. Each 
model has four inputs (control currents «), four outputs (rotor displacements y), and 312 states. 

MODEL REDUCTION 

Before attempting a model reduction, a nominal system representing all of the six systems 
mentioned above was created by taking the average of the seals' coefficients. The dynamic 
properties of the seals proved to be relevant for the choice of the model reduction method. 
Different model reduction techniques have been compared: 

1) Modal reduction 
2) Weighted model reduction according to Green and Limebeer (Green, Limebeer, 1995) 
3) Weighted balanced truncation of the stable model part (Balas et al., 1995). 

Figure 3: Reduced model and reduction error from weighted balanced truncation 
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Modal reduction, which is the standard choice in AMB machinery (Schweitzer, 1994), pro
duced an inacceptable error larger than 20% of the plant's transfer function at 20Hz. The rea
son for this is the fact that the seals destroy the definiteness properties of the stiffness and 
damping matrices of the plant model. The Green/Limebeer method suffered from numerical 
problems caused by the high order of the original system. Application of the weighted bal
anced truncation method, however, resulted in a reduced model of order 34 with a reduction 
error of only 0.03% for all frequencies up to 30Hz and an error of 3% up to 750Hz. Both the 
reduced system and the reduction error are depicted in figure 3. The weighted balanced trunca
tion algorithm comprises the following steps: 

1) Decomposition of the model G into its stable part G s and its antistable part G a . 
2) Definition of square, stable, minimum phase frequency weighting functions W1(s) and 

W2(s) of small magnitude at frequencies where a small reduction error is required. 
3) Pre- and postmultiplication of the stable part with the inverse conjugate transpose of the 

weighting functions: Gw(5) = W 1 ( - J ) , - / G S ( J ) W 2 ( - 5 ) , - / 

4) Reduction of the stable part of G w by balanced truncation yields G w > r . 
5) Reversion of step 3 on G W ) r : G S ) T(s) = W ^ - J J ' G ^ r ( j ) W 2 ( - j ) ' ' 
6) Addition of the antistable part Ga'to the stable part of G s > r yields the reduced plant G. 

The order of the reduced plant G is given by ord(G) = ord(G a) + orJ(G w > r ) . 

H-SYNTHESIS CONTROLLER DESIGN 

THEORETICAL BACKGROUND 

Being a method for robust controller design, (4,-Synthesis adresses three problems: 
1) In the robust stability problem, the goal lies in finding a controller that stabilizes the 

plant in the face of all uncertainties belonging to a certain set of uncertainties. 
2) In the nominal performance problem, one looks for a controller that achieves a certain 

behaviour of the closed loop including the nominal (undisturbed) plant. 
3) The robust performance problem is the combination of the above. Here, one looks for a 

controller that guarantees a certain closed loop performance for the nominal system and 
all disturbed systems. It is this class the controller design problem for the pump belongs 
to. 

We will now give a short description of how these problems are adressed in ^-Synthesis. 

Robust controller design methods are based on the so-called small gain theorem, which 
states that the closed loop depicted in figure 4a is stable for all disturbances A with UAH,,,, < y if 
and only if the maximum singular value of M is strictly smaller than y for all frequencies. From 
this follows that the peak of the maximum singular value a(M(./'(D)) is the reciprocal of the 
size of the largest unstructured uncertainty A the system can handle without becoming 
instable. The definition of JJ, follows from an extension of this: When restricting the 
uncertainties modelled by A mentioned above to be of a certain structure (e.g. block-diagonal), 
|X is defined as the reciprocal of the size of the largest admissible uncertainty of that structure. It 
follows directly from this definition that |X(M(;(0)) is alway smaller than G(M( . / (Q)) , since 
only a subset of disturbances is considered. Consequently, the |LI approach is less conservative 
than the unstructured (H^ )-approach. Robust controller design aims at maximizing the closed 
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Figure 4: Small gain theorem and interpretations 

loop's region of stability. For ji-Synthesis, this means choosing K such that the peak value of n 
of the transfer function from m to m, T ^ i m , is minimized. M is then replaced by the feedback 
configuration of K and G (figure 4b). 

As we have shown, robustness requirements can be expressed as limits on certain transfer 
functions, and the robust stabilisation problem for uncertainties that can be expressed as a A -
block is solved by minimizing these transfer functions. The same is true for performance 
objectives. Here, the controller is to ensure that certain signals remain smaller than some fixed 
values over a range of frequencies. 

D-if-Iteration, which forms the core of today's ^-Synthesis, yields controllers that 
minimize the p. value of the transfer function T ^ shown in figure 4b. Therefore, this 
algorithm can be used to solve both the robust stability and nominal performance problems. 
It is the so-called main loop theorem that states that the robust performance problem can also 
be addressed by [i-Synthesis. In essence, this theorem says that the robust performance 
problem (which is nothing but a nominal performance problem for a whole class of plants 
parametrized by an uncertainty A) is equivalent to a robust stabilisation problem for the 
nominal plant and an augmented uncertainty (see figure 5). A direct consequence from this is 
that D-Jf-Iteration can also be used to solve the robust performance problem. 

Figure 5: Main loop theorem 
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APPLICATION ISSUES 

Due to the above, |j.-Synthesis is generally suitable for adressing the robust control problem. 
To use the algorithm for solving real-world problems, however, some additional considerations 
are necessary. 

As we have seen, the (i-Synthesis algorithm minimizes the peak of the closed loop system's 
|i-plot over frequency, i.e. ^.(MO'a))) < y for all co where y is as small as possible. (Using a 
suitable scaling of the plant, one can make 1 the critical value for y, then if and only if 
|j.(M(-/a))) < 1 for all co the design was successful. In the following, we assume this to be the 
case.) This is exploited for the purpose of transfer function shaping in the following way: 

First, the relevant transfer functions for expressing the robustness and performance 
requirements must be identified. To this end, additional robustness and performance inputs and 
outputs must be introduced to the plant. Then, the problem-specific information about the 
amount of uncertainty and the performance requirements must be introduced. This is done via 
weighting functions. By postmultiplying a weighting function W(J) to a plant output, the 
controller resulting from a successful design attempt will achieve W(/'co)*W(7Q))M(7CO) < 1 
for all ca Then, with W(,y) being of the form W(J)*I, this implies that MO'co) < w (y'co) for all 
CO. Obviously, the transfer function is bounded by the inverse of the weighting function w. 
Consequently, W can be used to shape M by choosing w to be large at frequencies where M is 
to be small. In a similar way, information on input signals (e.g. disturbances) is included by 
premultiplying weighting functions W(J) that are proportional to the amplitude of the signals. 

An example of a plant with additional inputs and outputs and weighting functions is shown 
in figure 2. For this plant, the robust performance problem is to find a controller K s.t. 
|i(T(G, K)(;co)) < 1 for all where T(G, K) is defined as follows: 

m m I m 

y = T(G,K) d TjtG.K) d 
u n h 

where Ti is defined by = T^G.K) 

In summary, two steps are necessary to apply the theory to real-world problems like the 
pump: First, a suitable framework with robustness and performane inputs and outputs must be 
defined. Then, weighting functions reflecting the information on disturbances, on uncertainty 
and on performance requirements must be chosen. We will now describe these two steps in 
detail for the pump. 
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DEFINITION OF FRAMEWORK FOR CONTROLLER DESIGN 

Robustness: Model of the System's Uncertainty 

The various sources of uncertainties considered in the model can be split into two groups: 
Uncertainty stemming from the FE modelling, from numerical errors in the calculation of the 
seals' coefficients, from linearization, from manufacturing errors, and from the model 
reduction is non-parametric and must be modelled in a "lumped" (multiplicative) fashion. 
Uncertainty originating from the variation of the seals' damping and stiffness coefficients as 
the throughput q changes is parametric. To avoid conservatism, this uncertainty can be 
modelled by pulling the uncertain parameters out of the plant. This is outlined in figure 6 for 
the two parameters representing the damping or stiffness coefficients of one single seal. 

In figure 6, the system without uncertainty is given by the matrices (A,B2,C2,D22)- The 
nominal parameters are contained in the matrix A. The modelling of parametric uncertainty 
requires one extra input and one extra output on the plant for each uncertain parameter. Via the 
additional outputs which are represented by the matrix Cj, the velocities and displacements of 
the degrees of freedom corresponding to the varying damping and stiffness coefficients leave 
the plant. These signals are then all multiplied by the same scalar 8 which assumes values 
between -1 and 1 and represents the variation in throughput q. Then, the signals are multiplied 
by damping and stiffness scalings Ps and p s representing the variation of the individual 
coefficents and the resulting forces are reinjected into the plant at the appropriate locations via 
the additional inputs defined by matrix Bj. 

This approach allows for explicit modelling of the variation in throughput. However, it 
assumes all coefficients to change linearly with q, which is not exactly the case. Even worse. 

Figure 6: Parametric uncertainty model 
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with extra inputs and outputs on the plant, the model reduction problem becomes much more 
difficult - the number of transfer functions that must be represented accurately by the reduced 
model increases quadratically with the number of inputs and outputs of the plant. Furthermore, 
with the D-iST-Iteration the resulting controller order increases with the number of inputs and 
outputs of the plant. Finally, the uncertain mass coefficients cannot be included in the 
parametric uncertainty model since the mass matrix enters the problem inversely. In 
consideration of these facts, we decided to incorporate the variation of the seals' coefficients in 
the multiplicative uncertainty together with the uncertainty coming from the other parameters. 
The uncertainty model chosen is depicted in figure 7. 

Performance Objectives 

Additional inputs and outputs on the framework are required to specify the performance 
objectives. To avoid reduction problems, all disturbance forces physically acting on the pump 
have been modelled as disturbances acting on the pump's output. Therefore, one additional 
input, d, was added to the framework directly behind the system. To account for sensor noise, 
the input n was introduced right before the controller. 

The most important performance requirement is that the rotor's displacement y may under 
no circumstances exceed the radius of the the air gap between rotor and magnetic bearings. To 
ensure that this goal will be met, an output y is added. Finally, to model amplifier saturation, 
the output li was added between controller and plant. 

SELECTION OF WEIGHTING FUNCTIONS 

Uncertainty Weight W, m 

The weighting function describes the magnitude of the model uncertainty over 
frequency. It has to be chosen large enough to cover all model uncertainty (from FE modelling, 
numerical errors in the calculation of the seals' coefficients, linearization, manufacturing, 
model reduction, and from parameter variations) in order to achieve robust stability. However, 
choosing W m larger than necessary degrades performance and may even yield a problem 

Figure 7: Model of multiplicative uncertainty 
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without solution, although the plant could actually be robustly stabilized. Consequently, it is 
necessary to choose W,,, large enough but with as little conservatism as possible. The 
following new theorem provides a basis for this: 

Theorem 1: Consider the system in figure 7. Let G denote the nominal system, G an arbitrary 
disturbed system, and S(G, Wm, i) the set of all systems G(I + AJJJWJJJ .) with the same 
number of unstable poles as G and ||Am||<)o < 1. Then for each frequency ca, the diagonal 
weighting function just large enough so that G is contained in S(G, Wm, i) is given by 

WmOco) = o(G-'a(D)(GO-(D)-G(ya))))xI11 

(A short proof is provided in Appendix A). 

This theorem allows to calculate the magnitude of the weighting function required to just 
capture a certain uncertainty exactly. For noninvertible systems G as in our case, the values for 
W m can be calculated pointwise over frequency. Then, for any pair of systems G and G, this 
theorem yields a suitable uncertainty weight. The final uncertainty weight to be used in the 
design is obtained by applying the theorem to all combinations of G and G, where G always 
is the nominal system used in the design and G varies over all disturbed systems. Pointwise 
maximisation then yields the magnitude of the weighting function required to account for all 
uncertainties considered. A stable, real-rational upper bound is then chosen for W m . 

In the above theorem, G and G are not required to be the actual nominal and physical 
systems in the design. In fact, it can be applied to any pair of systems G and G. In the 
following, we exploit this capability to illustrate the size of the individual errors. To do so, we 
proceed in two steps: First, a weighting function is calculated for each individual error. 
To this end, G and G must be chosen appropriately. In the second step, the individual 
weighting functions are added to yield a weighting function that covers the total uncertainty to 
be expected. W,,, is then chosen as a stable, real-rational upper bound. 

To cover the model reduction and flux variation errors, the theorem is successively applied 
with the reduced nominal plant for G and each of the six full-order systems for G. The 
resulting uncertainty weighting functions are displayed in figure 8. A suitable weight to cover 
these errors would be the maximum of the six weighting functions shown. 

To get a weighting function that covers possible errors in the model of seals (numerical 
errors, manufacturing imprecisions, wear), the seal's coefficients of the six full order systems 
have been varied by 10% in various ways. For each case, the above theorem has been applied. 
The resulting weighting functions for one of the six full order plants are displayed in figure 9. 

The linear model of the pump is an approximation that works quite well for the range of low 
frequencies up to about 100Hz. However, in the high frequency range beginning at 500Hz, the 
behaviour of the system is not linear. To model this error, the weighting function from figure 10 
has been designed. 

For the remaining errors (FE-modelling and actuator model), no additional weighting 
functions have been introduced. Because these errors are small (high-resolution FE-Model, 
good linearity properties of bearings), the following calculation of the overall weight W m will 
introduce enough conservatism to account for small additional errors. 

After having captured all the individual errors, the weighting function W m that covers the 
worst case combination of all these errors has to be designed. To this end, the total error has to 
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Multiplicative Error. Reduced Nominal vs. Full Order System 
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Figure 8/9: Weighting functions for reduction and throughput variation / seal variation 

be modelled as the sum of the individual errors. To be employable in the design, V I m is 
required to be real-rational. Figure 11 shows the maxima of the individual errors along with 
their sum and a real-rational weighting function that bounds this sum from above. This 3rd 
order weighting function is our choice for W m . 

Disturbance Force Shaping Weight W d 

During operation, disturbance forces are acting on the pump's impellers. These include: 
• static forces (radial thrust) 
• forces circulating at a low frequency (0-10 Hz) 
• forces circulating at rotational freqency times # of running blades/impeller (700 Hz) 

Unbalance is compensated using feedforward compensation (Herzog, 1996), such that the 
rotor is allowed to rotate about its main axis of inertia. Therefore, unbalance forces are not 
further considered here. 

Figure 10111: Weighting function for modeling high frequency error / total error, weight W 
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Disturbance forces are modelled as disturbances acting on the pump's output (i.e. 
displacements) instead of forces on the impellers. Therefore, the physical forces expected have 
to be transformed into corresponding displacements on the pump's outputs. The size of these 
forces was computed to be a maximum of SOON on each of the impellers. Again, the worst case 
with all forces pointing in the same direction was assumed. Figure 12 shows the displacements 
at the bearings over the rotational frequency of the circulating forces. The shaded area is of no 
interest since in this frequency band no forces are expected to occur. It is outside this area only 
where the real-rational weighting function W d must be larger than the displacements 
corresponding to the expected disturbance forces. 

It is worth noting that here actually different weighting functions are used for the channels 
of the high and the low pressure AMB, whereas all other weighting functions considered in this 
design are of the form w*l4, with w being a scalar weighting function and I4 the unit matrix of 
order 4. • 

Uncertainty Weight W n 

The sensor noise was assumed to be 0.1% of the air gap for all frequencies. The weight W n 

was therefore chosen to be a constant 0.001. 

Actuator Limitation W u 

The force the AMBs can exert on the rotor is limited by the maximum current of the 
amplifiers (4A). For higher frequencies it is further diminished by amplifier voltage limitations. 
This has to be taken into account in the controller design by limiting the feasible controller 
output. Figure 13 shows both the admissible controller output and the weighting function W u . 

Figure 12113: Disturbance forces' effect on plant outputs, weight W d / 
actuator limitation and weight W u 
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Weighting Function W 8 Displacement Due to Identical Forces F=300N On Impellers 
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Figure 14115: Displacement limitation weight Ws / performance of reduced controller 

Displacement Limit Weight W s 

The last weighting function that needs to be choosen is Ws. Its purpose is to define an upper 
limit on the tolerable displacement at the bearings that has to be maintained despite all 
uncertainties and disturbances expected. In the framework chosen, this weighting function is 
the only true design parameter in this problem. All other weighting functions are defined by the 
physical properties of the plant. Figure 14 shows a weighting function W s designed to limit the 
maximum acceptable output to 10% of the air gap. 

GENERALIZED PLANT AND CONTROLLER DESIGN 

With the framework from above the order of the generalized plant was 62. For this plant, a 
controller has been designed using the MATLAB D-Jf-iteration script dklt (Balas et al., 1995). 
The corresponding uncertainty structure for the D-K-Iteration according to the main loop 
theorem (figure 5) is block diagonal and has two blocks. The first block adresses robustess and 
has dimension 4 by 4, and the second block adresses performance and has dimension 8 by 8. 
The order of the resulting controller was 90. The increase in order results from the weighting 
functions added in the D-step of the iteration. 

A second design attempt with a displacement limitation to 5% of the air gap failed. 

CONTROLLER REDUCTION, DISCRETISATION & PERFORMANCE ANALYSIS 

The resulting controller achieved the performance and robustness specifications. However, 
90 states are far too many for implementation. Hence, a controller reduction was carried out. 
The maximum implementable controller size was computed to be 32 states. Several controller 
reduction techniques were compared to achieve a controller of this size. The best results were 
achieved using a simple balanced truncation. The reduced controller still met all specifications. 

To indicate the reduced controllers performance, the (nominal) pump's response to the 
expected disturbance forces is shown in figure 15. A comparison with figure 8 shows that the 
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displacements due to disturbances have been reduced well below 5% of the air gap. For the 
AMB on the low pressure side of the pump, this is a reduction of about 85%. 

Finally, the reduced controller was discretized using the z-transform. Again, there was no 
noticeable degradation in both performance and robustness. 

CONCLUSION 

A systematic, formalized way for derivation of the controller design parameters (weighting 
functions) from requirements on control variables, system limitations and uncertainties in 
physical model parameters has been presented. The applicability of the method has been 
demonstrated on a real-world system with many sources of uncertainties and large disturbance 
forces. Furthermore, it has been shown that .̂-Synthesis can be used to obtain discrete 
controllers of implementable order for high order plants. 

APPENDIX A 

Proof of Theorem 1: For simplicity of the proof, assumethat GO*©) - GO"©) ^ OV©. We 
have to show that there is a h.m with 11 A j < 1 s.t. G = G( I n + A I n W m ) . By solving for 
A m ,wegetA m = (G^G-IJW^. With wmO©) = a(G- 70©)(GO©)-GO©))), we 

get for A m : d ^ O © ) ) = a((G- i(;©)G(7©) - IJW^O©)) 

= ^ 5 ( G " 7 0 W ) G O " W ) " I n ) = ^ 

Thus, for this choice of W,,,, G lies in S(G, . The minimality is shown by contradiction. 
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