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ABSTRACT 

Recently, work on rotating losses in magnetic bearings has focused mainly on the measurement 
of rotating losses, and on the creation of models that attempt to reproduce these results. Though 
there has been some success on both counts, there has been less emphasis on interpreting what 
these results mean in terms of practical guidelines for the design of low-loss bearings. The 
present work reformulates a previously developed analytical model of rotating loss so that the 
effects shaft speed and pole count on rotating losses can be more easily identified. Conclusions 
drawn from this formulation are then compared to previously reported experimental data. 

INTRODUCTION 

Most recent work on rotating losses in heteropolar magnetic bearings generally has one of two 
aims: either accurate measurement these losses, or development of analytical or computational 
models for the losses. Losses have been measured via run-down tests (Kasarda, 1997; Mizuno 
and Higuchi, 1994). Alternatively, losses can be deduced thermally (Stephens, 1996). Models 
of the losses in heteropolar bearings have been derived for the case of laminated rotors (Meeker 
and Maslen, 1998), and for solid rotors (Ahrens and Kucera, 1996). Both of these works 
approach the problem via a Fourier analysis of the magnetic field, as originally suggested in 
(Matsumura and Hatake, 1992). These models address eddy current losses but have not yet 
been extended to include hysteresis or saturation effects. However, these previous works do 
not explore the implications of these results on the design of lower-loss heteropolar bearings. 
The main design question addressed by these works is the merits of NSNS biasing versus 
NNSS biasing. However, other aspects of geometry also have important effects on the amount 
of rotating loss: number of poles on the stator; thickness of the joumal iron; and the width of the 
poles. The aim of the present work is to reformulate the loss model developed in (Meeker and 
Maslen, 1998) so that the effects of the bearing geometry are clearly in evidence. Conclusions 
drawn from this model are compared with experimental results from (Kasarda, 1997). 

In outline, the model development presented previously in (Meeker and Maslen, 1997) is 
reviewed. Next, this model is reformulated more clearly expose the significant parameters 
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controlling the losses. Then, the effect of shaft speed is examined. A nondimensionalized 
formulation needed for exploration of geometric effects is developed, and the effect of pole 
count is explored. These findings are compared to data reported in (Kasarda, 1997). The paper 
concludes with summary remarks and suggestions for natural extensions. 

MODEL REVIEW 

For rotationally-induced eddy currents in laminated heteropolar bearings, a thin-plate model 
can be employed that is in some ways similar to the eddy current models used for losses in 
transformer cores (Stoll, 1974). Since the laminations are thin in comparison to the other 
dimensions of the joumal, simplifications can be made which permit an analytical solution 
for the field inside the joumal laminations in terms of the field at the surface of the joumal. 
Rotating losses inside the journal are inferred from the field at its surface. The reader is directed 
to (Meeker and Maslen, 1998) for a full derivation of the present loss model; only the relevant 
results will be presented here. 

The model assumes that the joumal iron is magnetically linear, has constant, isotropic per­
meability n and conductivity o, and has negligible hysteresis. The thickness of the rotor lam­
inations is represented by d. The coordinates 9 and r denote tangential and radial position 
relative to the center of the journal in a stator-fixed reference frame. 

Since field in the rotor is 2K periodic in the 0 coordinate, the magnetic field solution consists 
of harmonics in 0. A phasor representation (Hoole, 1989) can be adopted where average flux 
density across the thickness of a lamination, B, is: 

fi(r,0) = Re 
/!=0 

= Re ^ bn(r) (cos n0 + jsinnQ) 
n=0 

(1) 

where b n is a complex number denoting the magnitude and phase of the n t h harmonic compo­
nent of B. Since the system is assumed to be linear, each harmonic can be considered separately 
and the results for all harmonics superimposed to yield a complete solution. In the same way, 
magnetic scalar potential, Q, can be represented as a phasor transform. 

The main result of (Meeker and Maslen, 1998) is that the effects of eddy currents inside 
the joumal are represented solely by a boundary condition for each harmonic that relates scalar 
potential applied to the surface of the joumal to its normal derivative: 

dn n f im \ / t anh[( l+ ; )2 t 

(1+7) 
•tanh 

25* 
(2) 

Where 8„ is the skin depth for the n t h harmonic component: 

5„ = (3) 

This boundary condition can then be used in combination with a BEM or FEM model of the 
bearing to solve for the scalar potential distribution on the surface of the rotor. 
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Once the distribution of potential is known on the surface of the rotor, the power loss asso­
ciated with each harmonic component can be computed by integrating the power losses implied 
by the flux distribution inside the joumal. For each harmonic component, the loss for the entire 
joumal is: 

i / « — / ; i \ . 
p " = | Q " ' o | 2 {i^ t a n h -̂ -̂  cosh^ +cosg-

(4) 

where / is the axial length of the joumal and Q„ ; 0 denotes the magnitude of the n t h harmonic of 
scalar potential at the surface of the rotor. 

REFORMULATION OF LOSS EQUATION 

In short, there are two main results of the thin plate eddy current model. The first is eq. (2), a 
tool for relating the potential at the rotor surface to the flux that is flowing normal to the rotor 
surface. If this boundary condition is used, the flux in the joumal need not be found exphcitly, 
because an analytical solution for the flux in the joumal is implied by this boundary condition. 
The second is Eq. (4), an equation for eddy current losses only in terms of potential at the 
rotor's surface, the material properties of the joumal laminations, and the lamination thickness. 
Once the potential at the surface is determined, the total rotating eddy current losses can be 
determined by summing the loss components for each harmonic: 

oo 

Ptotal=Y< Pn ( 5 ) 

Although these results are useful for a computational study of bearing losses, their utility is 
somewhat limited. In the form of (2) and (4), nothing in particular is evident about the effects 
of varying bearing geometry (except, perhaps, the trivial result that losses can be reduced by 
thinner laminations). However, these equations can be reformulated in a way that illuminates 
the effects of various geometric parameters on rotating losses. 

A crucial insight comes from several researchers (Meeker and Maslen, 1998; Matsumura 
and Hatake, 1992): in the case of laminated rotors, the flux profile in the air gap varies almost 
negligibly over a very wide range of speeds. Even though the reluctance of the rotor rises due 
to the effects of rotationally-induced eddy currents, joumal reluctance remains small compared 
to the highly reluctant air gap. The result is a relatively constant flux density profile over a 
wide range of speeds. If the expression for loss can be rewritten in terms of flux density at 
the rotor surface, rather than potential, the magnetostatic flux distribution (or some idealized 
flux distribution) can be used to estimate the losses, providing a closed-form approximation for 
the losses, instead of the previous computational/analytical form. In this manner, the effects of 
different geometric parameters can be explored directly. 

The goal is to solve for Q.n,0 in terms of £„;„, which denotes the n t h harmonic component 
of the average flux density directed normal to the rotor at the surface of joumal. The loss will 
be in terms of flux at the surface of the joumal. Since is the flux density in the air at the 
joumal surface, it can be written in terms of the scalar potential in the air gap as: 

bn,o = - V v - f o T ( 6 ) 
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Substituting (6) into boundary condition (2) relates QW i 0 to 

bn.o = - - ( S l ^ l - h * -
Taking the magnitude of both sides of (7) gives, after considerable simplification: 

Solving (8) for |i2n,o|2 and substituting into (4) gives 

. r ^ i r s i n h ^ - s i n ^ ^ 

(7) 

(8) 

Pn= Ko (9) 
cosh jr- — cos ̂  J 

Equation (9) can then be rearranged as the product of a term representing effective loss per unit 
volume, Pe!n, and an effective joumal volume, Vetn: 

(10) 

where 

Pn — Pe.n Ve.n 

_i fiM2<*l lsinhi;-sH\ 
2 \ f o S > / \ c o s h i - c o s ^ / 

Ve:n = 2nr01 (r 0 - n) | ^ nw 
w 

and w is the non-dimensional joumal thickness ("joumal fraction"): 

vv = 
_ ro-n 

ro 

( ID 

(12) 

(13) 

Two interesting points are directly evident from these forms. First, (11) has exactly the 
same form as the classical expression for loss per unit volume. Second, (12) is just the volume 
of the unrolled joumal times a correction factor based on the thickness of the joumal and the 
number of the harmonic in consideration. As n increases, the effective volume becomes smaller 
because most of the flux stays close to the surface of the joumal. 

EFFECT OF SHAFT SPEED 

Since shaft speed, co, appears only as a component of §„ in Pe.n, its effects can be considered 
by examining this term alone. Previous works have asserted that rotating eddy current losses 
should increase proportionally with co2 (Kasarda, 1997; Matsumura and Hatake, 1992). This 
dependence arises by considering only the first term in the Taylor expansion of the classic 
loss/area equation about co = 0. If (11) is also expanded about CO = 0, the result is: 

1 f \ b n . 0 \ 2 d 2 \ 1 - | 2 2 2^2 
(14) 
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Figure 1: A component of Pein versus d/§n 

The co2 loss dependence is shown in the present work in the case where <i/8„ is small. 
However, this approximation must be judiciously applied for an accurate result. Consider 

the second bracketed term in (11), denoted for ease of notation as M: 

u = 
sinh ̂  - sin ^ 

COSh jr-—COSjr-
(15) 

The u term is plotted in Figure 1. The low-frequency approximation is obtained by approxi­
mating u as its low-frequency asymptote, 

u w \d/8 n (16) 

However, u has a high-frequency asymptote of u = 1. This asymptote leads to a high-frequency 
approximation of P e M as: 

1 r iK-
2 l ScVn 

>n,o\ d} \bn,o 
i2a83 J 4 ^ 0 

(17) 

The dependence on to is to the 3/2 power, rather than squared. 
There is potentially a large difference between the two approximations. To decide whether 

a given case is best approximated as low-frequency or high-frequency, consider the intersection 
of the two asymptotes. These lines meet at d/8 n = 3 (that is, when the lamination thickness is 
three times the skin depth), which might be used as a dividing line between the two regimes. 

To get a feel for where this line typically falls, consider a joumal composed of typical 0.35 
mm (14 mil) laminations. If an eight pole stator run in a NSNS biasing scheme is considered, 
the lowest numbered harmonic present will ben = 4. From (Meeker and Maslen, 1998), mea­
sured properties for a particular sample of 3% Silicon Iron are a=7.46 MS/m and ^=3460 ^ . 
In this case, solving for CO when d/b n = 3 yields 00=10500 RPM - roughly on the dividing line 
between what would be considered low speed and high speed rotors. 

Even for low-speed rotors, (14) cannot be used indiscriminately; substituting (14) for P e t n in 
(5) typically does not result in a convergent series. Even though the lower-numbered harmonic 
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Figure 2: Ideal flux distributions 

components of the loss may be well approximated with (14), the higher-numbered parts fall in 
the the small skin depth paradigm. For high speed rotors, it may be most accurate to assume 
that loss goes with to 3/ 2. This way, losses will be more accurate at high frequencies where 
the impact of the losses is more likely to be of concern. Low frequency losses will be over-
predicted, but the relative magnitude of these errors will be small. 

NONDIMENSIONALIZED LOSS 

To examine the effects of specific geometric parameters, it is useful to nondimensionalize the 
losses. Since losses are mainly of concern at high speeds, it is assumed that the P e M can be 
approximated by (17). 

The analysis is simplified somewhat by considering only the idealized flux distributions of 
bearings with an even number of poles, neglecting leakage and fringing in the gap. In this 
case, specific magnitudes can be prescribed for each b m : 0 . For a bearing with p poles, each 
pole has a width of 2nFp/p radians, where F p is the fraction of the journal's surface covered by 
poles: 0 < Fp < 1; a typical value of F p is about 0.5. Under each pole, there is a uniform flux 
density of magnitude Bhtas normal to the joumal; between poles, no flux crosses the journal's 
surface. The idealized flux distributions for both the NSNS and NNSS biasing schemes are 
plotted in Figure 2. With these simple flux distributions, the sequence of can be represented 
analytically by computing the phasor transformations of the above profiles. The result of the 
phasor transformation is that all are zero except for n where: 

n — 
(2m-l)p 

2q 

for m = 1,2,... (18) 

where q = 1 for NSNS and q — 2 for NNSS. The nonzero b n^ are: 

r f-j4qBhias \ 
bm.o = < -p. TT- \ sm 

I 2 m - l 7tJ 

(2m- 1)71 
2q 

sin 
(2w-l)ff 

2q 
(19) 

Equations (18) and (19) show that changing the number of poles in the bearing doesn't change 
the values of the sequence of non-zero coefficients; it merely shifts the locations where they 
occur in the sequence of n's. 
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To compare losses produced by various pole widths in a meaningful way, these losses 
should be compared for bearings with the same total pole area (so the same net amount of flux 
is going through the joumal, and the load capacity remains constant). The total pole area,a,>„n, 
is defined as: 

(2nr 0l)F p (20) 

Solving for / yields: 

/ = (21) 
2nr0Fp 

Since r, is usually specified by the shaft diameter, and r 0 is chosen later, it is useful to substitute 
for r 0 in terms of w and r,: 

(22) rn = 
1-w 

Substituting (19) into (17), the high-speed approximation for P e i n, yields: 

(23) 

where Pe^m is the nondimensional loss for each harmonic: 

Pe.m — 
4p ,3/2 

7tz l(2m-l)q\ sin 
(2m-1)7^ (24) 

Substituting (21) and (22) into (12) yields: 

Ve,n = (aironn) Ve^ 

where the nondimensional joumal volume, 
^e.m 1^: 

'e.m -I 2q 

pFp{2m-\){\-M>)\ 
coth 

(2m-\)pw 
2^ 

(25) 

(26) 

The total non-dimensional loss, Q, for the bearing can then be obtained by summing the 
contributions from each harmonic: 

Q = ZPe^Ves 
m=l 

(27) 

Note that Q is independent of speed, material properties, and lamination thickness; it is a 
function of w, F p, and p, as well as the choice of biasing configuration, q. In addition, Q is 
bounded by a series proportional to m - 3 / 2 , guaranteeing that Q converges. 

EFFECT OF POLE COUNT 

From (24), the loss per volume increases with p 3 / 2 . Therefore, increasing the number of poles 
has the same effect on the loss per volume term as increasing the shaft speed, as might be 
expected. However, the increase in the loss per unit volume is largely offset by a decrease in 
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effective volume. Eq. (26) shows that the effective volume goes with (at worst) 1 /p. At higher 
n, the flux tends to stay closer to the surface of the joumal. Multiplying the contributions from 
Pe,m and V̂ m yields a y/p dependence of loss on pole count. 

Scaling by ^/p, however, represents a worst-case increase of losses with increasing pole 
number. Due to the cotangent component of V ^ , the lower-numbered components of the loss 
can scale at less than y/p. If (pw)/(2q) is small (when the joumal is thin relative to the 
number of poles), flux becomes significantly more concentrated than it would be for either a 
thicker joumal or a greater number of poles case. The effective volume rises, and loss is higher. 
Increasing the number of poles while maintaining the same joumal iron thickness can pull the 
the lowest-numbered components out of this high-loss region, resulting in the less than y/p 
increase in losses. 

COMPARISON TO EXPERIMENTAL DATA 

A previous experimental study (Kasarda, 1997) measured the rotating losses in magnetic bear­
ings with a range of configurations. This work was based on measuring the randown rate of 
the suspended shaft under the combined influences of windage, hysteresis, and eddy current 
losses. (Mechanical friction losses in the shaft were minimized by using a very short, rigid 
shaft which should exhibit very little bending at the tested speeds.) It is important to note that, 
as with virtually any power loss measurement it was impossible for Kasarda to measure eddy 
current losses directly. Instead, the losses were inferred from rotor speed versus time trajecto­
ries on the basis of a model which attempted to predict the influence of windage, eddy currents, 
and hysteresis on this trajectory. Therefore, the eddy current losses reported in (Kasarda, 1997; 
Minuzo and Higuchi, 1994) are substantially colored by the model used to extract them. 

Of particular interest in this study is the comparison between the losses in eight and sixteen 
pole stator bearings. The stators were designed so that the total pole area was the same for 
both designs. Two different shafts were used in the testing so that results were obtained both 
with 0.38 mm (15 mil) radial air gaps and with 0.76 mm (30 mil) radial air gaps. Both shafts 
had journals composed of 3% silicon iron with a lamination thickness of 0.36 mm (14 mils). 
Tests were mn at bias levels of 0.32 Tesla, 0.38 Tesla, 0.46 Tesla, and 0.54 Tesla. In all cases 
where results with similar air gaps and bias flux densities are compared, the eddy current losses 
appeared to be identical (within the experimental uncertainty) for the 8- and 16- pole stators. 
The data for the nominal 0.46 Tesla test do not agree exactly, but the reported bias for the 8-
pole stator is 0.44 Tesla which should lead to about 10 percent lower losses, consistent with 
the experimental results. Examples of the experimentally determined losses for these cases are 
pictured in Figure 3, taken from data presented in (Kasarda, 1997). 

To be consistent with the discussion above, which indicates that, if pole fraction Fp, axial 
length £, and rotor radius r,- are all held constant, then the losses should be at most 40 percent 
greater for the 16 pole bearings than for the eight pole bearings. In the case of a change from 8 
to 16 poles while keeping a constant air gap length, the increase in losses is very modest-less 
than a p 1 / 2 increase (the expected worst case rate of increase in the present analysis). 

However, the experimental data shows that, for the same bias field density, the losses in­
crease by nearly 100 percent when the number the air gap is decreased from 0.76 mm to 0.38 
mm. This is not consistent with the present model, in which fringing effects are neglected (i.e. 
the same losses would be expected for both airgap lengths). Apparently, fringing effects around 
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Figure 3: Measured losses for various pole numbers and air gap lengths 

the pole tips may have a significant effect on the subsequent rotating losses. 
It is also interesting to note that (Kasarda, 1997) used a model for the speed dependence 

of the eddy current losses which goes as co2 at low speeds but is mitigated by a "crowding" 
effect at higher speeds: the second term in a Taylor's series expansion of (11). A simple null 
hypothesis exploration of the importance of this second term on regressing the experimental 
data suggested that the term could not be significantly detected in the data. The importance of 
this is that it suggests that the data is dominated by "low" frequencies, which contradicts the 
present comment on the critical ratio of lamination thickness to skin depth. One possible expla­
nation for this apparent contradiction is that the Taylor's series for (11) does not converge very 
quickly and, in fact, retaining just the first and second terms would imply an actual reduction 
of eddy current losses with speed increase beyond about 15,000 RPM in Kasarda's data: the 
model explored in the null hypothesis test was poor enough that its rejection would be expected 
even if the data was, in fact, substantially dominated by "high" frequency effects. 

CONCLUSIONS 

An analytical formulation was presented for predicting rotating losses in laminated heteropolar 
magnetic bearings. Several insights relevant to low-loss bearing designs were gleaned from 
this formulation: 

• Losses become proportional to o) 3/ 2 at high speed. 

• Increasing the number of poles while maintaining a constant pole fraction scales the 
losses with y/p in the worst case. 

Additional geometric parameters like pole fraction and joumal width are also brought into 
evidence, although their effects on loss are not examined in this work. 
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Several significant discrepancies between previously reported experimental data and the 
present analysis were uncovered. Examining the models which underlie the regressions re­
quired to extract the experimental results suggests that some of these discrepancies may stem 
from flawed experimental models. However, a significant corroboration lies in the fact that 
the experimental work clearly suggests that the sensitivity of loss to the number of poles is 
relatively small. 

In order to reveal some of the geometric sensitivities, the present work ideaHzes the field 
distribution around the joumal as a square wave. The experimental data suggests that fringing 
at the edges of the air gap plays a significant role in mitigating eddy current losses. Therefore, 
an important extension of the present work would be to find a way to introduce this effect in a 
simple manner so that power loss optimal designs can take advantage of this effect as well. 
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