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ABSTRACT 

A preliminary study of controller tuning conducted by genetic algorithms (GAs) is presented. 
On-line tuning problem is formulated and a specific GA for the purpose is put forward. 
Experiment results on an active magnetic bearing (AMB) test rig are given to show the 
effectiveness of this method. 

1. INTRODUCTION 

In control engineering the final step of the task is usually to implement the controller that has 
been designed for a given plant. It is almost always the case that the plant is not exactly known, 
or even with a known plant the controller is usually designed based on a simplified model, 
where nonlinearity is neglected and high frequency dynamics is not considered. Therefore, no 
one can be certain that the closed-loop system will work as desired when the controller is 
correctly constructed, and on-line tuning is almost always a must. Even if the controller is 
designed based on an accurately identified model, the designer can hardly say the tuning is not 
necessary. As this manual tuning may need much effort and be time consuming, it is desirable 
that controller tuning process be conducted automatically by some search algorithm. 

GAs are a category of search algorithms imitating the mechanics of natural evolution. It is 
characterized by being able to locate the global optimal solution, requiring no derivative 
information of the objective function and its less sensitivity to the dimension of the problem 
compared with other search algorithms (Michalewicz, Janikow and Krawczyk, 1992; 
Michalewicz, 1996). Besides, GAs are robust, that is, a satisfactory solution, if not the best, 
can always be found by GAs. This is indeed an important property in searching a controller. In 
fact, GAs have been successfully applied to controller design and optimization tasks (Varsek, 
Urbancic and Filipic, 1993; Michalewicz, Janikow and Krawczyk, 1992). However, to the best 
knowledge of the author, no on-line work has been reported. 
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The main idea of this study is to use GAs as a searching machine to conduct the on-line 
tuning work automatically. A group of candidate controllers are made to evolve from 
generation to generation, matching the given but not clearly known plant more and more, and 
finally meet the prespecified closed-loop performance indices as much as possible. This way, an 
accurate model of the plant is not needed, that is, accurate identification is not needed, and the 
tuning task is made easier, especially on the occasion where quite a few interdependent 
parameters are to be adjusted. 

2. DEFINITION OF THE PROBLEM 

It is assumed that the controller structure is known. The task is only to determine the values 
of the controller parameters such that a given performance index (PI) which is a function of the 
parameters is minimized. A simple case is to search for the parameters of a linear controller so 
as to achieve the prespecified closed-loop performances. From the view point of optimization, 
sensitivity function or singular value may be used as an objective function. But in real time 
implementation this will give rise to a great deal of computation, hence the time requirement 
may become unreasonable, as for evaluating each candidate solution a frequency response 
measurement will have to be executed and in GAs many times of evaluation are needed. Thus a 
time domain PI is preferable, such as I(T)AE or I(T)SE. However, with such a PI the stability 
of the closed-loop system may become sensitive to parameter drift, because the resultant 
controller may have parameters lying close to the boundary of the region where the closed-loop 
system is stable. Here in this study, instead of finding some optimal controller, we take a 
moderate objective of finding controller parameters that yield given time domain specifications 
such as rise time and overshoot to a step input. 

Consider a linear SISO system shown in Fig. 1, where Gp(s) and Gc(s) are transfer fiinctions 

r(s) _ 
Gp(s) 

y(s) 
Gp(s) 

Figure 1. The closed-loop system. 

of a given plant and a controller respectively. For each controller parameter p=(pu /?n)
T 

which contains n independent parameters, by applying a step input at r(t) an output XO can be 
measured and a number of time domain performances denoted by z=(z\, z/)T can be 
computed with the measured data. In order to find the controller parameter that yields specified 
performances Zo=(zoh ••> ̂ o/)T, an objective function 

/(/>) = ( z - z 0 )
T Q ( z - z 0 ) (1) 
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is maintained, where Q is a positive definite weighting matrix. Now the problem is defined as to 
find ap* that minimizes the objective function (1). When the performances are properly chosen 
that minimization of the objective function implies closed-loop stability, a constraint on the 
search region is usually not necessary. However, if a priori knowledge enables a constraint on 
p to be specified, search may be made easier. 

3. THE GENETIC ALGORITHM 

While in most iterative algorithms only one candidate solution is updated at each iteration, a 
group of candidate solutions are handled simultaneously in GAs. Each solution is called an 
individual and the group of the individuals is called a population. Each individual is assigned a 
positive fitness value evaluated by an objective function, representing its relative goodness. At 
the beginning, an initial population P(0) is maintained. Then it is updated iteratively by applying 
genetic operators, yielding a population sequence I\k), k=0, 1, where each one is called a 
generation. The number of individuals in each population is usually kept constant and called 
population size. This iterative process proceeds until some termination condition is met and the 
best individual in the final population is taken as the optimal solution. 

Apart from handling a group of solutions instead of a single one, GAs are more 
characterized by the genetic operators that map P(k) to P(k+\) with randomness. For details 
the reader is referred to (Michalewicz, 1996; Back, 1996). Below a specific GA for 
minimization which differs slightly from those widely adopted ones is given. It is used later for 
controller tuning. 

In the modified GA an individual p is a real vector p=(pi, p„f, corresponding to n 
controller parameters to be tuned. A populationP{k)={p\, ...,pm} is a set of/w such individuals. 
Before the algorithm is given, let the basic operations be defined. In the following, random 
numbers denoted by r are uniformly distributed in [0, 1] and those denoted by s(x) are 1 with 
probability x and 0 with probability l-x. All the random numbers are independently generated. 

Initiation: Create an initial population P(0). 
Evaluation: Evaluate the fitness value of each individual in the current population by the 

objective function (1). It also gives the least fitness value among the individuals. 
Elimination: The individuals in the current population is ranked in such an order that their 

fitness values increase monotonically with index. Then generate m random numbers n, rm, 
and check whether >•,<(/'-1 )/(m-l) is true for /=1, m. If in /'-th check the result is true, the /'-th 
individual is eliminated from the current population. After elimination the population has only 
ma alive individuals left, and \<ma<m. 

Reproduction: This is to fill up the population that has undergone elimination by 
reproducing w-/wa new individuals from the m3 individuals still alive in P(k). To reproduce one 
new individual, two individuals, denoted by pu=(ai, a„) andpv=(bu &„), are chosen from 
the /wa alive ones in P(k) randomly. Then generate n random numbers si(/?c), sn(pc), and 
make a new individual/JW=(CI, c„), where Cj=Sjaj+(l-Sj)bj,j=\, ...,«, andpc is the cross rate. 
Finally, generate 2n random numbers Si(pm), sn(pm), and r„, and multiply c, with 
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Sj[\+h(2rr\)]+(\-Sj), wherepm is the mutation rate and h is a positive constant real number for 
controlling the intensity of mutation, referred to as mutation intensity. This process for 
reproducing one new individual is executed m-ma times independently, and then these newly 
created individuals are placed back in P(k). 

Now the algorithm is given in Fig. 2, where fo is the acceptable fitness value and N is the 
allowable maximum generation in case 
that the GA never terminates. In the 
elimination, the best individual will have 
an index of 1 after ranking, so it will not 
be eliminated, fulfilling naturally the 
elitist selection (Michalewicz, 1996). To 
adopt such an elimination procedure 
instead of the usual selection has another 
advantage, that is, the probability of the 
occurrence of two or more identical 
individuals in a population is very small, 
which is helpful to maintain the diversity. 
After the elimination, averagely m/2 
individuals are missing. This is seen by 

give the values of m, pc, pm, fo and N 
*=0; 
initiation; 
evaluation; 

check: if fmin<fo or k=N, then exit; 
lr.4-lrH; 
elimination; 
reproduction; 
evaluation; 
go to check; 

Figure 2. The modified genetic algorithm. 

0/(m-\) + y(m-\)+ ••• +(m-\)/(m-l) = m/2 (2) 

where the /-th item on the left-hand-side is the probability that the /'-th individual be eliminated. 
The reproduction combines the operations of crossover and mutation. The intensity of the 
crossover is controlled by p a. Note that when pc=0.5 the crossover is of most intensity. The 
mutation, being multiple instead of additive, eliminates intensity differences when the values of 
the elements of p are of different orders. This multiple mutation also confines the elements 
within a single sign, which is usually the case for controller parameters. Finally, note that in 
evaluation the individuals come directly from the previous generation, i.e., the ma alive ones 
after elimination, need not be evaluated. 

As GAs are problem dependent, there are many variations based on the standard frame in the 
literature. The GA given above is one of many possible ones that can be used for on-line 
controller tuning. However, comparisons with other ones has not been further addressed. 

4. EXPERIMENT 

The experiment is done on the axial channel of a five-DOM AMB test rig introduced in (Li, 
1997). The actuator has a current control configuration. So its linearized model is 

1(5) S' - Or, 
(3) 
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where y(s) is the displacement, i(s) is the current input and ao, bo are positive constants. For 
this plant a phase-lead controller 

( 4 ) 

is used, where B u Bo and Ao are three parameters to be tuned. For the performances of the 
closed-loop system, desired rise time zoi and overshoot Z02 to a step reference input are 
specified. So the objective function to be minimized is 

/ ( P ) = , - *oi ) 2 + 922 (*2 - ^02) 2 (5) 

where zi and Z2 are measured rise time and overshoot respectively, p^iBi, Bo, Ao) is the 
parameter vector, and qn, qu are positive constants. To obtain measured rise time and 
overshoot resulted from the controller with given parameters, the controller is converted into a 
discrete one and loaded to the DSP based AMB control system, where a step reference input is 
applied and the output is sampled at 128 consecutive sampling instants with 2048 
corresponding to 0.25 mm of displacement. The sampling interval is 200 ps. In handling the 
rise time and overshoot the integer version of the sampled data is used and the unit of time is 
the sampling interval. The rotor is positioned with a reference of -250 and then a step input 
from -250 to 250 is applied in order to use the region where the plant is more linear. Suppose 
the initial, stead-state, and first peak output are ôo, ̂ ss and y v respectively, the rise time is 
defined as 

* i = '90 - '10 ( 6 ) 

where tw is the instant that y{t)= ôo+O.l̂ Vss-̂ oo) for the first time and /90 is the instant that 
•KO ôo+O.POss-̂ oo) for the first time. As the data are sampled at discrete instants linear 
interpolation is used when necessary. The overshoot is defined as 

*2 =0'p -y„)/(ya -yoo) O) 

At the beginning, some initial values of the controller parameters which provide closed-loop 
stabilization are known. They are obtained with the automatic start-up method (Fritsche and 
Arnold, 1995; Li, 1997). However, with the method the performances are not easy to be 
satisfactory while stabilization is usually possible. The initial parameter ispo=(6S25, 2573500, 
2100), which leads to a rise time of about 12 and an overshoot of about 0.16. The desired 
values are chosen as zoi=8 and zo2=0.1, and the weighting factors are chosen as qu=l and 
2̂2=10000 in order to make the two indices comparable. 

The GA parameter settings are m=\0, pc=0.5, pm=0.25, h=0.02, /o=0.5 and iV=100. In the 
initiation each individual in i^O) is obtained by multiplying the three elements of po with 
1+0.05(21)-!), where A} (/'=1,2,3) are random numbers. Run the GA with the given parameters. 
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Figure 3. Experiment results of the first run. 

it terminates by reaching the maximum generation. Fig. 3 shows the fitness value, rise time and 
overshoot of the best individuals in each generation. That in the final generation is /j*=(7781, 
2474200, 1928) w i t h 1 . 7 8 2 , and the corresponding rise time and overshoot are 9.310 and 
0.103 respectively. It is observed that while the fitness goes down steadily, the overshoot 
fluctuates about the desired value and the rise time is always greater than desired. This may be 
explained as the overshoot is sensitive to B\ only, but more than one parameter must change 
simultaneously in the correct direction in order to reduce the rise time without affecting the 
overshoot too much. This problem may be relieved by choosing a smaller weight for the 
overshoot term in (5) or other forms of controller parameterization. 

The experiment is done again with #22= 1000, ten times smaller than before. To make the 
termination condition comparable/o is reduced to be 0.25. Fig. 4 shows the results. It is seen 
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Figure 4. Experiment results of the second run. 
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that this time the rise time fluctuates more and the overshoot has an obvious decline tendency. 
The best individual in the final population turns out to be /?*=(8373, 2634600, 1924) with a 
fitness of 0.591, and the associated rise time and overshoot are 8.665 and 0.112 respectively, 
being a little better than the previous. However, the iteration still terminates with the maximum 
generation being reached. The experiment is done for a third time with another form of 
controller 

GB(5) = 
T2s + 1 

(8) 

where the gain K and time constants Ti and T2 are addressed directly. In terms of (4), when K 
rises both Bi and Bo will rise, which gives rise to a shorter rise time while the overshoot is not 
affected as much as before. Besides, Ti has strong effect on overshoot but little on rise time. By 
the decoupling effect of (8) better results can be expected. The results are shown in Fig. 5. The 
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Figure 5. Experiment results of the third run. 

GA terminates again with the maximum generation being reached, but the best fitness declines 
to 0.272, being close enough to/o=0.25. So this time the result is accepted. The best individual 
within the final population isp*=(K, T u 7,2)=(1442, 0.003016, 0.0004705). Translated into the 
original form it is p*={Bi, Bo, Ao)=(9315, 3065700, 2126). The associated rise time and 
overshoot are 8.491 and 0.106 respectively, being close enough to the specified values. 

All the three runs have iterated 100 generations. As in the elimination averagely half the 
individuals are eliminated, the total number of evaluations including those for the individuals in 
P(0) is about 10+100x(10/2)=510. The time for a run is a little more than the time for 
evaluation which is about 510xl28x200^s«13s. It is mentioned that GAs are intrinsically 
parallel (Michalewicz, 1996). But with one physical system the individuals must be evaluated 
one by one, which means the parallelism no longer exists. 
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5. CONCLUSIONS 

Apart from manual and other tuning methods, it is shown that GA-based tuning may be an 
additional choice for on-line tuning. The concepts involved are simple, the implementation is 
easy and the time required is acceptable. Besides, minimization of the objective function 
provides an 'instant' controller, because the performances come from the physical system. 

However, for practical applications some problems must be considered. If the controller is 
designed based on an accurately identified plant model, every aspect of the performance can be 
taken into account by the designer. With GA, however, the only access is an objective fiinction, 
and it is not easy for the objective function to account for all the intentions of the designer, 
especially when the plant is not well known. So, to make an effective objective function with 
the available knowledge about the plant is of essential importance. 

The minimization problem is in fact of multiple objective. In the experiment desired rise time 
and overshoot are specified. It is observed that when knowledge about the relationships 
between the parameters and outcomes are exploited, better results can be achieved. In other 
words, the effectiveness of the GA relies on the parameterization of the controller. In further 
research, a learning mechanism that enables GA to leam the effects of the controller parameters 
on the performances may be considered. With the acquired knowledge the totally random 
mutation can be biased towards favorable directions so as to reduce the dependence of the 
effectiveness on controller parameterization. 
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