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ABSTRACT 

This paper presents a method of vibration compensation for magnetically levitated rotor 
systems. Using feedforward strategy, compensation signals are produced with an adaptive 
filter. The rotation speed is the only parameter which has to be known exactly. 
In the first part a short introduction into the feedforward vibration compensation is given. 
The second part discusses the so-called 'method of steepest descent'. This method is based 
on the gradient of the mean square error. Then the LMS algorithm is presented. It is shown 
that it behaves 'in the mean' like the method of steepest descent. In the last part simulations 
and measurements of a high-speed drive system are presented. 

ENTRODUCnON 

At the Electronic Engineering and Design Laboratory of the Swiss Federal Institute of 
Technology, several projects are targeted on magnetic levitated high-speed spindles up to 
LO'OOO rpm. Because of limited precision of production, unbalance arises which 
unfortunately cannot be modeled exactly. 

For rotationally symmetrical shafts the geometric axis and the axis of inertia are 
theoretically the same. In this case no unbalance will be measured. The rotor turns around its 
geometric axis and the orbit will be a single point. 

With unbalance one might imagine an additional small mass (Figure 1). Now the rotor 
turns around the axis of inertia, which is moved away from the geometric axis. The sensors 
detect a deflection of the shaft, the orbit. If the rotation speed is supercritical, the gyroscopic 
coupling becomes dominant and the rotor becomes stabilized in a certain orbit. The position 
controller, assumed to have very high gain, tries to nullify the orbit. The stable orbit could 
not be corrected because of the limited dynamic bearing forces. 
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Figure 1: Orbit caused by unbalance 

The main idea of vibration compensation is to nullify the I s t harmonic of the orbit. The 
position controller no longer reacts to a deflection and no harmonic output current is 
produced. The rotor is turning now force free. This makes it possible to reduce power 
consumption of the magnetic bearing system. 

There are several methods for vibration compensation. They could usually be divided in 
two families: notch fdters in the controllers and open loop control strategies. 
In the first family adaptive notch filters are inserted into the feedback of the control loop 
(Herzog et al.,1996) They affect the phase around the rotation speed so that it is difficult to 
cross the bending criticals. 
Open loop or feedforward strategies produce compensation signals which are added to the 
sensor signals so that the orbit vanishes. Some of these strategies have the disadvantage that 
system matrices are needed (Larsonneur, Siegwart and Traxler, 1992; Knospe et al. 1993, 
1997a, 1997b). These matrices have to be known or estimated. With this knowledge they 
produce quite good compensation even in the bending criticals of the rotor. 

In the following, a new method based on the LMS algorithm (Moschytz, 1995) is 
presented. It needs only statistical knowledge of the system and does not affect the behavior 
of the main control loop. 

PRINCIPLE OF 'ADAPTIVE FEEDFORWARD CONTROL' 

With the help of a reference sine the adaptive filter produces a signal which corresponds 
to the first harmonic of the desired current in amplitude and phase. In electric drive systems 
this signal usually can be derived from the motor controller (Figure 2). The only condition is 
that the first harmonic of the position signal and reference sine must have the same 
frequency. Knowledge of the phase is not necessary, which is an advantage over other 
vibration control strategies. The output of the filter is subtracted from the position signal. The 
controller now „sees" only some noise around zero. 
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Figure 2: Feedforward Control 

THE ADAPTIVE FILTER (AF) 

THE FINITE IMPULSE RESPONSE (FIR) FILTER 

Figure 3 shows a scheme of an adaptive FIR filter. The basis for an AF that reproduces 
amplitude and phase of a noisy signal with the help of a reference sine of the same frequency 
is the finite impulse response filter. 

An FIR filter of infinite length could produce theoretically any answer. But we are 
looking for a harmonic that is equal to our orbit in amplitude and phase. A second order FIR 

" *[*] • 

_x[k-ll 
harmonic signal which is different in amplitude and phase can be produced. 

A very simple way for vibration reduction at a fixed frequency is to tune the filter so that 
the difference between output signal and position signal becomes as small as possible. 

filter creates two out-phased sines = . With their linear combination, any 

Reference Signal 

4*] = sin(2^i.*) 

Output 

s[k] 

Adaption 
Algorithm 

Figure 3: Structure of the Adaptive Filter 
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THE ERROR FUNCTION 

One could assume the position signal to be a sine s[k] superposed by White Gaussian 
Noise r[k]. The orbit can be thought to be a 'desired signal' d[k]=s[k]+r[k] that must be 
aproximated by the output signal y[k] of the filter. An error e[k] is produced by subtracting 
the output y[k] of the filter from the position signal d[k]. 

~wx[k] 
e[k] = d[k] - w' [k]x[k] with w[k] = 

w2[k] 
(1) 

We are looking now for a suitable error measure which helps to adapt the filter 
coefficients. Because only the statistical characteristics of the signals are known, the Mean 
Square Error (MSE) is chosen. Assuming that the signals x[k] and d[k] are weakly stationary 
the MSE could be calculated as follows: 

MSE = J(w) = E{e2[k]}= (2) 

= E{d2 [k]} + w'E{x[k]x' [k]}w - 2E{d[k]x[k]}w 

R-E{x[k]x'[k]}=-

p=E{d[k]x[k]} = -

1 

cos(2^^-) 

' cos(O) 

cos(2^^-) 

/ N 

cos(2^—) 

1 
is the Autocorrelation Matrix and 

the Cross-Correlation Vector. 

R and p can be inserted in (2). 

J(w) = E {d2 [k] } + WRw-2p'w (3) 

This error function can be graphically demonstrated very easily for a second order FIR-Filter: 

Figure 4: Error plane 
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We are looking now for the optimal coefficient vector w" = 

is negligible: 

J(w0) = mm 

, for which the error plane 

(4) 

Theoretically it can be calculated exactly by setting the gradient equal to zero provided that 
the system is well known: 

w0 =R-lp = 
4(1 -cos2 (2*4) 

ft 

f 
cos(tf>) - cos(4*— + ^) 

cos(2*4 + </>)- cos(2*4 - 0) ft ft 

(5) 

But there are various iterative search algorithms which do not require this knowledge. 

THE METHOD OF STEEPEST DESCENT 

The Method of Steepest Descent serves as basis for the LMS algorithm, which is better 
known under 'Procedure of Newton'. Assume any starting vector w[k]. With a small step in 
the direction of the negative gradient vector we reach the next coefficient vector w[k+l]. The 
MSE decreases with this action. 
M{k + l] = Mik]-cVw{J(w)} 

The gradient vector can be derived from ( 3). 
^M(^)} = -2p + 2Rw 

By inserting (7) in (6) and with ju = 2c (the step size of the algorithm) we get: 
w[k + l] = (I-iiRMk] + {ip 

Note that w[k] only converges i f 

(/ - juR)v < v|, for any vector v. 

(6) 

(7) 

(8) 

(9) 

SELECTION OF p 

In chapter 0 it was shown that convergence is not garanteed for any step size. An upper 
limit can be derived from (9). 

2 
(10) 

Here, Xm a x is the largest eigenvalue of the Autocorrelation matrix R. In practice one would 
select the step size 10 to 100 times smaller than /Jm!lx to get a monotonic descending 
convergence behaviour. 
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Figure 5: Learning curve of the AF 

Figure 5 illustrates the behaviour of the AF for different p: 

1: /" > /"max 

3:(+)M«MBm 

INFLUENCE OF THE STEP SIZE p ON THE CONVERGENCE TIME 

The convergence time of a filter coefficient is defined as the time during which wlXJ-w0 

falls short of -(>v[0]-vv"). Therefore the maximum convergence time depends on the 
e 

slowest coefficient. The following equations can serve as estimations: 

- 1 
and for ju « //„ 

1 

mm > 

-max 

T — max — 
M n i n 

(11) 

(12) 

THE LEAST MEAN SQUARE (LMS) ALGORITHM 

The big advantage of the LMS algorithm, which is discussed in here, is its very simple 
structure. That is the reason why this algorithm is one of the most widespread algorithms for 
FIR- based adaptive filters. 
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THE STRUCTURE OF THE LMS ALGORITHM 

The basis for the LMS algorithm is the momentary quadratic error. Its momentary 
gradient is calculated by: 

yw{e\k}}=2emvw{d[k]-wm}=-̂ [k]m c 13) 
By replacing the gradient in the Method of Steepest Descent by this momentary gradient we 
obtain the LMS algorithm: 

1. Calculate the output of the filter with the actual coefficients. 

y[k} = Wmx[k} 
2. Calculate the error. 

e[k] = d[k]-y[k] 
3. Adapt the coefficient vector by using the momentary gradient. 

M* + i] = M*]+M*M*] (14) 

COMPARISON BETWEEN LMS ALGORITHM AND METHOD OF STEEPEST 
DESCENT 

Now we want to show that the LMS algorithm behaves on average the same as the 
Method of Steepest Descent. The following depend on a few suppositions that are known in 
the literature as fundamental assumptions. 
If we build the expectation of w[k+l] we get: 

+1]} = (/-JuR)E{M{k]} + VP ( j j ) 

Which is the same as the expectation of ( 8). We see that the same rules are valid for 
convergency as in the Method of Steepest Descent. 

RESULTS 

As test rig serves the spindle shown in Figure 6. The rotor has a mass of about 0.680 kg 
and a length of 18 cm. The average diameter is 3cm. It is designed to operate at 120'000 rpm 
with the first free-free bending mode at lOO'OOO rpm. The rotor is supported by a radial 
bearing and a combined radial and axial bearing, both permanent magnet biased. The control 
system is a TMS320C50 based 5-channel electronic with a maximum of 48V output voltage 
and 3 A output current. 

The simulation (Figure 7) and measurements (Figure 8) are made at a speed of about 
50'000 rpm below the first bending mode. Simulation and measurements showed that with 
the adaptive filter strategy the output current can be reduced by a factor of about ten. The 
reference signal derived from the motor control makes a continuous adaption and also a 
continuous vibration control possible at different speeds of rotation. Thus a run-up with the 
vibration control turned on is possible even through the first bending mode. 



Figure 6: Magnetic bearing system 
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Figure 7:Simulated current orbits; left VC turned off, right VC turned on 
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Figure 8: Measured current orbits; left VC turned off, right: VC turned on 
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SUMMARY AND CONCLUSION 

The only parameter that influences the convergence is the step size. However the 
estimation of this parameter is relatively easy. Because of its inherent stability the algorithm 
adapts to parameter changes in the system like changes in rotation speed or unbalance. 
Because of its simple structure the LMS algorithm is suited for time-critical magnetic bearing 
control. Nevertheless it allows very good vibration compensation without applying additional 
disturbance signals and without exact knowledge of the system parameters. 
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SYMBOLS AND ABBREVIATIONS USED 

AF Adaptive filter 

j V-i 
MSE Mean square error 
R Autocorrelation matrix 

E Cross-correlation vector 
E Expectation 
V Gradient 

Step size of AF 
d Desired signal 
r White gaussian noise 
s 1 s t Harmonic of the orbit 
X Reference signal 

y Output of AF 
X Eigenvalue 
f Rotating frequency 
ft Sampling frequency 
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