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A B S T R A C T 

In this paper we provide a methodology for designing Linear Parameter Varying (LPV) con
trollers for use with magnetic bearings for flexible high-speed rotors in rotating machinery 
applications. The dependence of the gyroscopic and imbalance forces on the rotational speed 
of the rotor, combined with the ability to measure speed in real time, motivates the need for a 
controller which is scheduled on the rotational speed. The LPV method for computing a con
troller, which ensures stability and bounds on performance for all speeds within a given speed 
range, is used. Simulations are presented which compare the effectiveness of LPV controllers 
to a set of single-speed, gain-scheduled, optimal Hoo controllers. 

I N T R O D U C T I O N 

The modeling and control of flexible rotating machinery with imbalance becomes increasingly 
complicated when large changes in operating speed are expected. This problem is made worse 
by gyroscopic effects, due to the speed-dependent coupling along the transverse rotor axes. 
Imbalances impose synchronous forces with the rotational speed, whose magnitudes axe pro
portional to the square of the speed. With such a dependence on a system parameter, which 
may vary greatly, it is important that a given controller be able to handle the plant changes with 
rotational speed. Rotor flexibility effects worsen the control problem as the natural frequencies 
of the rotor also change with the rotor speed. To address this problem, gain-scheduled robust 
controller synthesis techniques have been used in the past (Sivrioglu and Nonami 1996, Mat
sumura et al. 1996). 

In this paper we apply the theory of self-scheduled Tioo control theory as developed recently 
in (Apkarian et al. 1994, Apkarian et al. 1995, Apkarian and Gahinet 1995, Packard 1994) to 
control a flexible shaft supported on magnetic bearings. The rotor system exhibits significant 
gyroscopics and imbalance forces. First, we develop a linearly, parameter varying (LPV) state-
space description of the rotor model with respect to the rotor speed. Using the results of 
(Apkarian and Gahinet 1995) we design a self-scheduled Hoo controller for this LPV system. 
Numerical simulations compare the performance of this LPV controller with a series of gain-
scheduled, single-speed Hoo controllers. 
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System Model 

In this section we present the main elements of the system used in this work. For a more 
detailed exposition the interested reader may consult (Mason 1997). 

Flexible rotor model 

At the Center for Magnetic Bearings at the University of Virginia a test rig is under construction 
to test modern control algorithms for gyroscopic and unbalanced rotating machinery supported 
on active magnetic bearings. This test rig is shown in Fig. 1 in a horizontal configuration. 
During operation, the shaft is located vertically and it is approximately 0.864 m (34 in) in 
length. Three magnetic actuator disks are located on the shaft. The lower and upper disks 
(items 2 and 5 in Fig. 1) are used as regular bearings. The middle disk (item 3 in Fig. 1) can 
be used to impose disturbances on the rotor. Sensors measuring displacements of the shaft are 
located at the middle and upper disks, as well as at the midspan disk. The operating speed 
range considered here is 104 rad/sec to 832 rad/sec (1,000 to 8,000 rpm). 
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Figure 1: The test rig. 

The equations for a flexible rotor can be derived using a finite element approach (Ahrens et 
al. 1996), (Nonami and Ito 1996), (Maslen and Allaire 1991). The program MODAL developed at 
the University of Virginia uses this method to generate a linear, speed-dependent state-space 
model incorporating flexibility and gyroscopic affects. The state-space model of the flexible 
shaft is of the form 

Am -PGm 
pGm Am 

Bm 0 
0 Bm 

(1) 
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C m 0 
0 Cm (2) 

where a n d Uky denote the vectors of modal states (mode shapes) in the X and Y directions, 
respectively. The inputs f x and f y are forces in X and Y directions specified at particular mass 
stations, and the outputs rx and ry are displacements at certain mass stations of concern. 

In (1), p is the rotational speed of the rotor. Gyroscopics act as a cross coupling between 
motion in the X and Y directions due to the rotor speed and is manifested by the gyroscopic 
matrix G m in (1). We can write (1) and (2) compactly as 

M = A(p)M + BF 
R = C M 

with 

F = R = 

A(p) = Am —PGm 
PGm Am 

B = ' Bm 0 c = ' Cm 0 
0 Bm 0 Cm 

(3) 

(4) 

(5) 

For each retained rigid or flexible mode, the model contains 4 states: The modal state itself, 
in the X and Y direction, and its first derivative in the X and Y direction. It should be noted 
that this model does not contain acceleration (p) terms and, thus, is not necessarily accurate 
for rapid changes in rotational speed. For a more detailed discussion on the derivation of (3) 
one may consult (Mason 1997). 

Bearing forces 

The force acting on a rotor due to an electromagnetic bearing can be expressed by a simple, 
linearized model incorporating a current stiffness, K i , and a displacement stiffness, K x (Maslen 
and Allaire 1991). The force acting on the rotor in, say, the X direction due to any one magnet 
is given by 

hx = K i (i - i 0 ) - K x {x - x 0 ) (6) 

where i 0 is some nominal bias current and Xo is a nominal displacement. We let the control 
effort at this magnet, u, be defined as i—io, the deviation of the current from the bias value. We 
define the measured displacement x as the displacement from the center axis, so that x 0 = 0. 
The force equation then becomes 

fbx = Kiu - K x x . (7) 

It is assumed that a deviation from the bias value on one side of the bearing is matched with 
an equal but opposite deviation on the other side. 

The influence of a force on a given modal state M n is given next. Taking one row 
from (3) corresponding to the magnetic bearing location and substituting the expression for fb x 

given in (7) one obtains 
M n = A n M - B b K x x n + B b KiU (8) 

where A n is the nth row of the A matrix and B i is the element of B on the nth row in the 
column associated with the bearing force input f ^ . The displacement x n is the displacement 
at the magnet in question, given by x n = C^M, where Cf, is the row of C associated with the 
displacement at the bearing. Substituting x n in (8) gives 

mn = {An - BbKxCb)M + BbKiU. (9) 



344 ADAPTIVE/GAIN SCHEDULED CONTROLS 

Equation (9) can be expressed as 

Mn = AnM + Bnu (10) 

with A n = A n — B bK xCb and B n = B^Ki. The new rotor dynamics model, incorporating the 
magnetic bearings, is then 

M = AM + Bn 
R = C M (11) 

where A and B are the matrices formed from the rows A n and B n , after accounting for all of 
the bearings. The inputs u = (tii,U2, W3,«4) are the control inputs to the bearings (deviations 
in current from the bias value), and the outputs are displacements at the sensor locations. 

Imbalance forces 

In this study imbalance forces are modeled as exogenous disturbance forces acting on the rotor. 
The controller attempts to minimize the effect of these imbalance forces on the forces at the 
bearings. One drawback of this approach is that one must assume a particular location at which 
these imbalance forces are applied, information that may not be readily available. However, 
in practice, certain portions of a rotor are more susceptible to imbalance than others (places 
where a large disk, fan, or motor are located, for instance). In such cases it is reasonable to 
have the controller concentrate on these locations. 

The imbalance forces f i x and fiy are typically given by 

/ix = p2cos(pt)d 
fiy = P2 sin(p*)J 

(12) 

where p is the rotational speed of the rotor and d is some constant, accounting for the magnitude 
of the imbalance. 

In this investigation, we are more concerned with how the system responds to a given 
imbalance force at a certain speed than with accurately modeling the changes in imbalance 
magnitude over the range of operating speed. To easily compare the response over all speeds, 
it makes sense to keep the magnitude of the imbalance forces constant. Because the forces 
are generated by a magnetic actuator, which we can control, rather than an actual imbalance 
weight, this approach presents no difficulties from an experimental standpoint. Ultimately, 
we will need to include a p 2 imbalance model, because the rotor will have some amount of 
mechanical imbalance. This can be easily accomplished as shown in (Mason 1997). For now, 
however, we drop the p 2 dependence from the force equations (12), and write the state-space 
subsystem as in (13) 

X i = 
0 - p 
p 0 

Xi + Vi = 
1 0 
0 1 

X j (13) 

Repeating the process for the Y plane as well, the imbalance forces are thereby incorporated 
into an augmented model which is of the form 

x = A(p)x + Biw + B2U 

z = Cix + D12U 

y = C2X + D21W 

(14) 



Linear Parameter Varying Controllers for Flexible Rotors Supported on Magnetic Bearings 345 

The inputs of this system are the "disturbance signal" w = d and control currents u = u, 
and its outputs y are displacements at the sensor locations. The performance variable z, to 
be defined later, includes shaft displacement, transmission of forces to the frame, and excessive 
control effort. 

Self-scheduled L P V controllers 

In this paper we use the methodology of (Apkarian et al. 1995) and (Apkarian and Gahinet 
1995) in order to design self-scheduled controllers (with respect to the parameter p) for the 
magnetic bearing system described by (14). To this end, consider (polytopic) LPV systems of 
the form 

x = A(p)x + Bi(p)w + B2(p)u 

z = Ci(p)x + Du(p)w + D 1 2(p)u (15) 

V = C2(p)x + D2l(p)w + D22(j>)u 

The system matrices are assumed to belong to the polytope S defined by 

S := Co < 
\ ( Ai Bu B2i \ 

^ C2i D2U D22i j 

, i = l , . . . , r (16) 

where Ai ,B i i , . . . , denote the values of the matrices A(p),Bi(p),... at the vertices pi of the 
parameter polytope V. Henceforth we will assume that in Eqs. (15) the system matrices 
B2(p),C2(p),Di2(p) and £>2i(p) are parameter-independent. In addition, the disturbance does 
not affect the performance output and there is no feedthrough term from the input to the 
measured output, i.e., Dn(p) = £>22(p) — 0. These simplifying assumptions can be relaxed, at 
the expense of increased complexity in the resulting formulas (Apkarian et al. 1995). 

Under the natural assumption that the pairs (A(p),B2) and (A(p) T , C j ) are quadrati-
cally stabilizable over the polytope V (see (Corless 1993) for a definition of quadratic sta-
bility/stabilizability) we seek a controller that establishes quadratic HQO performance for the 
closed-loop system. In particular, we are interested in LPV controllers, that is, controllers with 
state space representation 

n ( p ) : = ( A K W BK<j>) \ ( 1 7 ) 

CK(P) DK(P) 

where A K , B K , C K , D K are affine in a parameter p, which guarantee global stability and /Vgain 
of the map from w to z less than 7, such that, 

Nl2<7lHl2 (18) 

for all possible parameter trajectories p(t) G V. Such a self-scheduled LPV controller is given 
by the algorithm described in (Apkarian et al. 1995). 

Numerical Results 

The system model (14) was further refined with the addition of weighting functions. The 
selection of proper weighting functions is an important part of the LPV controller design process. 



346 ADAPTIVE/GAIN SCHEDULED CONTROLS 

These weights were chosen so as to penalize excessive shaft displacement, the transmission of 
forces to the frame, and excessive control effort. 

It should be noted that the performance requirements for force attenuation and minimal 
displacement are conflicting. In order to attenuate imbalance forces, we must allow the rotor 
to primarily revolve about its inertial axis. This results in fairly large measured displacements 
at the bearings, which we have also penalized. Omitting the force penalty and concentrating 
on eliminating displacement results in the rotor being forced to rotate about its geometric 
axis at the expense of forces transmitted to the frame. On the other hand, penalizing force 
and ignoring displacement may result in displacements exceeding the clearance spaces at the 
bearings. Without some penalty on displacement, the controller will not keep the rotor centered 
in the bearings, and will have poor performance in rejecting steady (DC) loads. 

We apply weights to both the force and displacement outputs, thereby characterizing their 
respective importance. In doing so, we essentially tell the controller how to divide a given 
amount of imbalance force between rotation about the inertial axis and transmission to the 
frame. Furthermore, for a given set of weights, we determine how much imbalance the system 
can handle before the allowable clearance is exceeded. As we increase the displacement penalty 
relative to the force penalty, we allow for greater imbalances before violating the gap space. 
In doing so, however, we reduce the force attenuation achieved for all imbalances. Conversely, 
a high penalty on force relative to displacement gives very good imbalance attenuation, but 
sacrifices robustness to non-synchronous disturbances, and limits the amount of imbalance that 
can be tolerated without exceeding available clearance space. 

The choice of the force and displacement weights, then, is best done by an iterative process 
of controller computation and simulation. One reasonable approach would be to design for a 
certain maximum expected imbalance, and adjust the relative weights so that the controller 
uses the nearly full clearance to handle this level of imbalance. An acceptable clearance would 
therefore be maintained for all magnitudes of imbalance below this expected maximum. 

Another important question is how to handle the flexible modes of the rotor. The simplest 
approach would be to ignore them altogether and limit the controller bandwidth to avoid 
exciting them. This essentially amounts to taking a controller derived for a rigid shaft and 
implementing it to a flexible system, hoping for the best. Two potential problems exist with 
this approach, however. First, simply limiting the bandwidth of the controller gives no guarantee 
that higher frequency flexible modes will not be excited (Balas 1982). Secondly, if we omit the 
high frequency modes from the model, the controller may have difficulties if these flexible modes 
show up in the sensor signals. An alternative is to model the high frequency dynamics, but to 
penalize bearing force at high frequencies, preventing it from exciting these modes. This also 
prevents a high frequency rotor vibration from being transmitted to the frame of the system. 
It is this approach that is used here. A potential drawback to this method is the fact that it is 
vulnerable to errors in the flexible model of the rotor. 

The filters chosen for this system were limited by the desire to keep the controller order 
reasonable. This allows for faster computation, faster simulations, and avoids the difficulty of 
optimizing the filters in the presence of an excessive number of free variables. It also leads to a 
quicker computation time, with respect to eventual implementation. After some trial and error, 
the four force signals were multiplied by the shaping filter Wf = (s/1000-|-l)(s/10000 + l ) . The 
displacement output filter Wj is just a multiplication by a gain of 100. This counteracts the 
tendency of automatic balancing controllers to let the rotor move about freely, and improves the 
response of the controller to non-synchronous disturbances, as mentioned earlier. The control 
forces are given a relative weighting of unity, without any dynamics. 

A single LPV controller was then designed for operating speeds between 104 and 832 
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rad/sec (1000 and 8000 rpm). Controller synthesis and testing were performed using LMIT00LB0X 
of MATLAB (Gahinet et al. 1995) and SIMULINK. The 7 reported by the LPV controller synthesis 
program was 545. For comparison purposes, a set of eight single speed Hoo controllers were 
also developed using the same weighting functions, at speeds of 104, 208, 312, 416, 520, 624, 
728, and 832 rad/sec. These Hoo controllers are measures of the best possible performance at 
their given operating speeds. 

The closed loop 7's for the eight Hoo and one LPV controllers are shown in Fig. 2. The 
asterisks show the achieved performance of the eight Hoo controllers at their design speeds. 
The dashed line is an estimate of the performance that would be achieved by additional Hoo 
controllers at other speeds. 

Performancs of 416 racVMC H-inflnity controOsr 

Cortrotor pcrtonnanc* campariaon 

380 400 420 440 460 4B0 

Figure 2: Hoo vs. LPV performance Figure 3: Single speed Hoo controller oper
ated over a range of speeds. 

These results show that the LPV controller is excessively conservative. Its performance is 
significantly worse than that of the Hoo controllers. However, the Hoo controllers are overly 
optimized for one particular speed, and have poor performance when operating away from the 
design speed. To ensure that the relative scaling of these performance measures was reasonable, 
a single speed Hoo controller was computed for the center speed 468 rad/sec, and a 7 of 6.13 
was computed. This is shown in Fig. 3, where the closed loop 7 of the 416 rad/sec controller is 
plotted for operation between 366-466 rad/sec. 

The fact that the Hoo controller performance drops off rapidly at speeds away from their 
design speed is due to the fact that an Hoo controller is tuned to the particular synchronous 
disturbance at the rotor speed p and performs poorly when the speed of the rotor is different 
than the design speed. 

Time transient simulations of the Hoo and LPV controllers were run at eight different 
speeds. The results for p = 520 rad/sec are shown in Figs. 4-5. Figure 4 shows the response 
of the LPV controller. The upper plots show the displacements in the X and Y direction at 
the lower and the upper bearings, respectively. The lower plots show the X and Y components 
of the force at the lower and upper bearings. Figure 5 shows the corresponding results for the 
Hoo controller. The results for other speeds were similar. 

The applied synchronous imbalance force for all cases was 1 lb. Both controllers stabilize 
the system over all speeds, but the Hoo controller achieves better performance in terms of force 
attenuation. This is expected, since the simulations were run at the design speeds of the Hoo 
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controllers, which correspond to the notches in Fig. 8. The performance of both controllers 
agrees with what is expected from their computed closed-loop 7's. The controller force 
attenuation and displacement improve with increasing speed. The LPV controller achieves its 
best performance at 416 rad/sec and 520 rad/sec, speeds corresponding to the bottom of the 
V-shape in Fig. 8. Force attenuation at these speeds is roughly 80% for the lower bearing 
and 90% for the upper bearing. The maximum closed-loop 7's for the LPV controller were 
computed at the vertex speeds 104 rad/sec and 832 rad/sec. As expected, the LPV controller 
exhibits the worst performance at these speeds, achieving only 50% and 75% force attenuation 
at the lower and upper bearings, respectively. 

Both controllers have higher forces and displacements at the lower bearing than at the 
upper bearing. This is because the system is non-symmetric. Imbalance forces are being 
imposed at a point which is closer to the lower bearing than to the upper one. It should also 
be noted that the displacements of the LPV and Hoo controllers are well within the clearance 
of 0.015 in. It would therefore be possible to obtain improved force attenuation by relaxing the 
displacement penalty somewhat. For real systems, the tradeoff between force attenuation and 
displacement would be based on being able to handle a certain maximum expected imbalance 
without exceeding the clearance space. 

Interpolating Hoo controllers 

In the previous section, we compared the performance of the LPV controller with Hoo controllers 
designed for a single speed. Since we are designing a controller for the entire operating range, 
this comparison is not fair since the performance of the single-speed Hoo controllers does not 
take into consideration the dynamic effects during the transition from one speed to another. A 
more fair comparison would be to compute performance for all speeds, not just those for which 
the Hoo controllers were designed. This requires some sort of switching algorithm for the Hoo 
controllers, to compute control outputs at speeds away from the design speeds. Interpolating 
between the controller matrices themselves is not recommended; doing so assumes a certain 
consistent structure that a given set of optimal Hoo will generally not possess (Hyde 1995). The 
motivation for the approach used here is the fact that abruptly switching between controllers 
at set cross over points introduces abrupt changes in the controller output, which should be 
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avoided. 
The performance of the LPV and Hoo controllers with changing speed was also investigated. 

Instead of interpolating the controller matrices themselves, as with LPV control, we interpolate 
the outputs of the two controllers whose design speed is nearest the current operating speed. For 
a given speed p, the output of the controller is the sum of the lower and higher speed controllers, 
with their outputs weighted by I and h, respectively. The gains / and h are determined from 
the rations of actual operating speed and the design speeds of the controllers. This approach 
does not significantly improve the "preferred speed" nature of the Hoo controllers, but it does 
prevent sudden changes in the controller output. 

Two simulations were run, one between 104 rad/sec and 208 rad/sec, and one between 
416 rad/sec and 520 rad/sec. In each case the rotor was held at the lower speed for 0.5 sec, 
accelerated at 250 rad/sec for 4 sec, and then held at the highest speed for 0.5 sec. The results 
for the second case are shown in Figs. 6-7. The LPV controller achieves better disturbance 
attenuation than the interpolating Hoo controller during the speed-varying portion of the test. 
This is because the interpolating Hoo controller moves away from its design speeds. The per
formance of the interpolating controller exceeds that of the LPV controller at the start and 
stop of the simulation, however. This is because the speed trajectory begins and ends at design 
speeds of the interpolating controller, corresponding to the notches in Fig. 8. 

2 3 
•nm.(~c) 

Figure 6: LPV controller response, 416-520 Figure 7: Interpolating Hoo controller re-
rad/sec. sponse, 416-520 rad/sec. 

The closed loop 7's for this interpolated Hoo approach are shown in Fig. 8, with the LPV 
7's included for comparison. As expected, the Hoo controller shows a severe drop in perfor
mance when operated at speeds away from the 8 design speeds. This could be improved by 
using a greater number of controllers. Ultimately, an infinite number of controllers would yield 
performance shown by the dashed line in Fig. 2. This approach is obviously impossible to im
plement, and would still suffer a loss of performance in the presence of parameter measurement 
errors. It does, however, provide an absolute benchmark against which to measure alternative 
approaches such as the LPV controller. 

The highly conservative nature of the LPV controller is due in part to the need for a single 
Lyapunov matrix which shows stability for all parameter values (Apkarian et al. 1995). I f one 
can construct a parameter-dependent Lyapunov matrix, an increase in performance would be 
likely (Tsiotras and Knospe 1997, Apkarian and Adams 1997). To examine this possibility more 
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closely, a set of seven LPV controllers was developed, each covering a 1000 RPM operating range. 
The closed-loop 7's of the resulting systems are shown in Fig. 9. Again, the single LPV controller 
and the eight Hoo controllers are shown for comparison purposes. As expected, the achieved 
performance of the individual narrow-band LPV controllers is better than that of the single 
LPV controller for a given speed range. As with the single LPV controller, the performance 
of the seven narrow-band controllers is best at the middle speed. Also, the performance of the 
narrow band LPV controllers approaches that of the optimal, Hoo single speed controllers at 
their midpoint. 

Conclusions 

We have designed and numerically tested LPV controllers for a flexible rotor with gyroscopics 
and imbalance forces. The preliminary results show that stability was achieved throughout the 
operating range and imbalance forces were attenuated. The performance, however, is worse 
than that of a single speed, Hoo controller at the same speed. These Hoo controllers, however, 
cannot be used at speeds that differ greatly from the design speed, as performance quickly 
deteriorates. Future work should address the derivation of LPV controllers which parameter-
dependent Lyapunov matrix solutions in order to improve performance, as well as robustness 
issues. 
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