
GAIN SCHEDULED PID CONTROL FOR 
ELECTROMAGNETIC VIBRATION ABSORBERS 
Lyndon S. Stephens,1 Marc A. Timmerman,1 Mark A. Casemore2 

ABSTRACT 

Electromagnetic vibration absorbers (EMA's) are mechanical bandpass filters 
attached to a structure, and tuned to attenuate the structures forced response over a limited 
bandwidth. In the presence of large applied forces, EMA effectiveness is dominated by the 
effective actuator stroke and by saturation effects. Under conventional PID control, 
assuming operation below saturation, the effective stroke is limited by the validity of the 
linear approximation to the actuator force-displacement relationship. In this paper, equations 
are presented for an extended linearization of this relationship about a series of linearizing 
points throughout the air gap. Expressions are derived for PID gains that optimally attenuate 
the forced response at each of the linearizing points and that can be switched into use 
according to a position variable inequality. Experimental frequency response plots are 
presented which demonstrate attenuation within each gain scheduled region and show the 
potential to increase the test rig actuator stroke by a factor of 1.7 over conventional PID 
control. 

INTRODUCTION 

Vibration absorbers are used to attenuate the forced response of structures in a limited 
bandwidth by applying a control force which actuates against the inertia of an auxiliary mass. 
The control force may be generated by a variety of passive elements such as springs and 
dampers (Den Hartog 1921) or active elements such as hydraulic servos, piezoelectric 
actuators (Tewani 1993; Stephens 1992) and magnetic actuators (Okada, 1975; Vishkov, 
1992; Stephens 1996). 

Gain scheduled control has its origins in classical methods of optimal control. The 
solutions to many problems are "switching" type control structures that switch between 
several possible controllers based on temporal or spatial variable inequality constraints 
(Pontryagin et al., 1962). The application of gain scheduled controllers to magnetic actuators 
has largely addressed the problem of unbalance response at critical speeds by scheduling 
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based upon the rotating speed of the shaft (Matsushita 1992, Krodkiewski, 1992). For such 
an application the objective is to attenuate the response of the shaft relative to the housing. 

For EMA's the objective is directly the opposite: that is to attenuate the response of 
the "housing" structure using the inertia of the levitated mass. It is well known that large 
housing disturbances that occur in applications such as machining chatter rejection, require 
large EMA actuator strokes in order to be effective. The objective of this research is to 
increase the effective actuator stroke by using an extended linearization of the air gap and by 
gain scheduling PID controllers that optimally attenuate the housing response to harmonic 
disturbances. In this paper, we present a theory for gain scheduled PID control and give 
experimental frequency response plots that demonstrate local optimality for each gain 
scheduled region. 

EMA MODELING 
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Figure 1: Model of An Electromagnetic Vibration Absorber (EMA) 

Figure 1 shows the lumped mass model of a 2-DOF electromagnetic vibration 
absorber with the auxiliary mass constrained to move internally to the "housing" by the radial 
air gaps, g t and g b . The housing is modeled as a spring-mass-damper system with a single 

fundamental frequency, 6?„ at which vibration must be attenuated. Differential magnetic 
forces, Ft and F b , can be generated by simple horseshoe magnets and act on the top and 
bottom of the auxiliary mass, respectively. Considering the effects of gravity g, the 
equations of motion are: 

Mxx + qjCj + Kxxx = Ft - Fb + d(t) + Mg 

mx2 =Fb-Ft+mg 
(1) 
(2) 

where the variables xj and X2 are measured relative to the centerline of the housing at 
equilibrium. The top and bottom magnet forces can be combined into a single actuation force, 
as F a c t = F t - F b . Then, the force-current-displacement relationship for the actuator is: 



Gain Scheduled PID Control for Electromagnetic Vibration Absorbers 333 

(2gt+%rf (28b+%f (3) 

where jU0 is the permeability of free space, A is the cross sectional area of the magnet poles, 

N is the number of turns of wire in each magnet coil, n r is the relative permeability of the 

iron, L, is the length of the flux path through iron, and I t and I b are the total current in the 

top and bottom magnets, respectively. It is important to include the iron reluctance in this 
formulation because it is significant for large relative displacements, which are ultimately 
constrained by the actuator radial air gaps. Defining the relative displacement, 
x r = (x1 - X2), the instantaneous air gaps are: 

St = 80 - Xr 

Sb= 80 + Xr 

(4) 

(5) 

where g 0 is the nominal air gap. Physically, each instantaneous air gap must be greater than 

zero. However, for EMA's operating under conventional PID control, the constraint on 
relative displacement is more restrictive because loss of performance occurs as the 
linearization of equation (3) (see next section) becomes invalid. Therefore, the effective 
actuator stroke of the EMA is some fraction of the radial air gap defined by unacceptable loss 
in vibration attenuation. 

PID CONTROL ABOUT A GENERAL OPERATING POINT 

Conventional PID control of the magnetic actuator consists of linearizing the 
actuating force in equation (3) about some operating point in the actuator air gap, and about 
some constant perturbation current. This is illustrated with respect to the air gap in Figure 2 
below, where x r represents small perturbations about the static operating point x r . 
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Figure 2: Linearization About a General Static Operating Point, xr 

The linearization is accomplished by first dividing the current in the top and bottom 
magnets into a bias current, l B , and a differential perturbation current, + l p , respectively. 
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T 

Defining the linearization vector x = [x r , I p ] , then a multivariable Taylor's series expansion 

is used to approximate the actuating force about the general static operating point, 

x = 3c, , i ' as follows: 

Fact Fact 

dF, 
act 

5 dx. 

dF act Ip + HOT (6) 

where x = x - x is the perturbation vector about the general static operating point, and HOT 
are the higher order terms and are neglected. Under this linearization the actuating force is 
given by: 

where. 

K =4H0AN: 

+ • 
VB-i.r 

mg0-xr)+%f [2(g0+xr)+%r] 

(7) 

(8) 

+ • [2(go-xr) + %r]
2 [2(g0+xr) + %r] 

(9) 

and, where Kp and tf, are the bearing negative stiffness and current gain, respectively. Note 

the first term in the expansion of equation (7) represents a constant force which must be 
either tuned out by balancing the bias currents or overcome using the integral term in the 
controller. The second approach is used in this work. For a desired static operating point 3cr, 

the constant portion of the perturbation current, i p (non-zero due to F ^ l - and gravity) can 

be determined by considering the net constant force on the auxiliary mass as: mg — F ^ = 0. 

Substituting this into equation (3), yields the following quadratic equation, which is solved 

for i p . 

1 + 
2U 

' - ( * ) 

2 4gf mg 

n- = 0 (10) 

Setting the reference position for the auxiliary mass in the air gap equal to the static 
operating point, x r r e f = x r , then the ideal PID control law takes the form: 

i p = axr + bxr + cj xrdt (11) 

where a, b and c are the proportional, derivative and integral feedback gains, respectively. 
The system block diagram under this control is illustrated in Figure 3 below. EMA's under 
PID control act as mechanical bandpass filters where the proportional and derivative gains 



Gain Scheduled PID Control f o r Electromagnetic Vibration Absorbers 3 3 5 

determine the effective closed loop stiffness and damping properties between the housing and 
the auxiliary mass. The integral term simply guarantees that the desired reference operating 
position in the air gap is maintained. Therefore, the design problem for this type of EMA 
control is to specify the proportional and derivative gains which optimally attenuate the 
housing response over a desired frequency bandwidth. 
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Figure 3: System Block Diagram Under PID Control About Operating Point, xr 

OPTIMAL GAINS FOR SMALL PERTURBATIONS ABOUT OPERATING POINT 

The objective of the EMA is to attenuate the amplitude of the main mass in a 
particular frequency range about the natural frequency, col <con <(o 2 , subject to the 

constraint that the relative displacement between the main and auxiliary mass is less than the 
air gap. Mathematically, the optimization is expressed as: 

min 
a,b 

max Xx((0) 
(Be[G)1,(B2J 

V max Xr(G))\<g0 

(B6[(B1,tB2J 
(12) 

Graphically, this optimization is illustrated in Figure 4 below, which shows a large 
amplification factor at the housing natural frequency with no EMA control. This 
amplification factor is attenuated somewhat when the EMA under PID control is added to the 
housing, and is further attenuated when the PID gains are optimized. Note how the single 
compliance peak splits into two peaks when the EMA is added and optimally tuned. This is 
due to the addition of the auxiliary mass. 
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Figure 4: Illustration of Optimal PID Control Using the EMA 
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The optimal gains are derived by first considering results presented for passive 
dynamic vibration absorbers. Passive dynamic absorbers utilize a spring and a damper placed 
between the housing and auxiliary mass to provide an ideal proportional-derivative control 
with fixed gains. (Spring stiffness is equivalent to proportional gain and damping is 
equivalent to derivative gain.) Results show [Den Hartog, 1934] that the optimal gains for 
the passive absorber are: 

aopt,pas + "opt,pass C c ^ ^ (13) 
8(1 + v) 

where ton is the natural frequency of the main system, cc is the critical damping factor of the 
auxiliary mass and v is the ratio m/M. These results can be extended to that of EMA's by 
substituting equation (11) into equation (7) and substituting this result into the equations of 
motion (1) and (2). Rearranging the result gives the following closed loop equations of 
motion. 

Mxx + CJJCJ + K xx x + K ibx r - K p x r + K iax r = d(t) + Mg + F a c t l 5 - c f x rdt (14) 

171x2 - K-ibx,. + K p x r - K iax r = m g - F a c t \ -+cjx r dt (15) 

By simply comparing equations (12) and (13) to the closed loop equations given by 
Den Hartog, equivalent expressions are found for optimal proportional and derivative gains 
for the EMA and are given below. 

aim Kn n ' n " 1 I " P h - C c 

"/>n( — __ .. - 1 — "Opt 
(16) 

8(1 + v) 3 

The optimal gains derived here neglect any constraints on the system including 
saturation of the magnet iron, and the slewrate saturation of the power amplifiers. These 
effects can be quite substantial, however for the present development we assume no 
saturation occurs. In the next section we propose a gain scheduled PID control to increase the 
effective stroke of the actuator. 

OPTIMAL GAINS FOR EXTENDED LINEARIZATION ACROSS AIR GAP 

This approach consists of dividing the radial air gap into several regions and 
linearizing the actuator force about the center point of each region using the Taylor's series 
expansion of equation (7). A schedule of optimal gains and reference positions,is required 
for all lair gap regions. These optimal gains are derived for each reference position, 
x r r e f = x r , in a fashion similar to that in the last section. However, the one key difference is 

that during EMA operation, the integral gain is specified such that the constant portion of the 

perturbation current, i p , changes slowly compared to the relative displacement under 

harmonic excitation at frequency G)n . This portion of the perturbation current is governed by 

the integral gain and essentially takes the steady state error to a step input to zero. Therefore, 



Gain Scheduled PID Control for Electromagnetic Vibration Absorbers 337 

as the auxiliary mass moves dynamically from one gain scheduled region to another, the 
reference position changes as a step, but the constant portion of the perturbation does not 
have time to change. Thus, if the auxiliary mass is first levitated at an initial reference 
position, x r M i , the corresponding constant perturbation current will be / i n i , and the optimal 

PD gains for each region are found by substituting = i p M i into equations (9) and (10) and 

computing modified negative stiffness and current gains based upon the change in x r , alone.. 

TEST RIG DESCRIPTION 
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Figure 5: Schematic of 2-DOF EMA Test Rig 

Figure 5 shows a schematic of the 2-DOF EMA test rig on which the gain scheduled 
PID control approach was implemented. The rig consists of two laminated, geometrically 
opposed horseshoe magnets attached to a frame which is constrained by linear bearings to 
move vertically. Together the frame and horseshoe magnets comprise the housing which can 
be approximated as a lumped mass. The frame rests on a fixed-fixed beam which determines 
the housing stiffness. A laminated magnetic core is mounted on a shaft orthogonal to the 
frame, such that the core is positioned in the air gap between the horseshoe magnets. The 
core is constrained to move vertically by a second set of linear bearings, thus acting as an 
auxiliary inertial mass. 

Figure 5 also shows the test rig sensors and instrumentation. An accelerometer 
measures the motion of the main system and an eddy current probe gives the displacement of 
the auxiliary mass relative to the main mass (the actuator stroke). The relative displacement 
is filtered and fed into a TMS320C30 based digital controller on which the control is 
implemented. The switching power amplifiers are Copley Model 423 amplifiers. A PCB 
Piezotronics impulse response testing kit is used to collect housing response data. This data 
is processed to give the frequency response of the housing under different control conditions. 
The rig is described in further detail in [Jagadeesh, 97]. 
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EXPERIMENTAL RESULTS 

For these experiments the radial air gap was set to 42 mils (1.06 mm). The horseshoe 
magnets are constructed of silicon iron with 59 turns of wire each and the bias current was set 
to 4 amperes. The housing and auxiliary masses are M=13.5 Kg and m=3.1 Kg, respectively. 
The housing natural frequency is (On=269 rad/s, and the magnet iron and power amplifiers are 
oversized such that saturation does not occur for these operating conditions. 

The PCB Model 086B01 impulse hammer is incapable of generating "large" signals 
relative to this test rig. Further, the impulse response technique is ill-suited for piecewise 
linear systems. Therefore, we could not test the effects of the extended linearization under 
large disturbances. However, the impulse response technique can be used effectively to 
demonstrate housing attenuation for small signal response within each gain scheduled region. 
The objective is to optimally attenuate the housing response in the frequency range 100 < co 
< 400 rad/s. This range includes the housing natural frequency (on=269 rad/s. The parameter 
P = */£o defines the fraction of the radial air gap for the set point within each region. Table 1 

below shows the two gain scheduled regions for this experiment. 

TABLE 1: GAIN SCHEDULE D REGIONS AND OPTIMAL GAINS 
Region Lower Bound 

(Pmin) 

Upper Bound 

(Pmax) 

Clopt bopt 

1 -0.4 0.4 6.4 100 
2 0.4 0.9 3.2 60 

Figure 6a shows the frequency response function (FRF) for the housing acceleration, 
% , under EMA control for (3=0 and optimal gains for region 1. For comparison, this and all 
FRF plots show the housing response with no EMA control. For these optimal control gains, 
7.5 dB attenuation in housing response results over the EMA stop band. Figure 6b shows 
similar results for the same controller gains but with P=0.39. For this reference location in 
region 1, 9.5 dB attenuation in housing acceleration results. In both cases the single 
compliance peak splits into two peaks with the addition of the EMA auxiliary mass. Figure 6 
illustrates effective housing attenuation when the relative displacement (actuator stroke) 
operates over gain scheduled region 1, using gains that have been optimized for that region. 
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Figure 6: Housing FRF ( % ) Using Optimal Gains from Region 1 and 

Operating in Region 1: (a) p=0, (b) p=0.39 
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Figure 7 illustrates what occurs as P is increased such that the EMA operates in gain 
scheduled region 2, but the gains are not switched from those optimized for region 1. Figure 
7a and Figure 7b show no appreciable housing attenuation for EMA control over the case of 
no EMA control, for P=0.66 and p=0.79, respectively. This is simply because the 
linearization about x r = 0 is no longer valid and the EMA is mis-tuned. 
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Figure 7: Housing FRF ( % ) Using Optimal Gains from Region 1 and 

Operating in Region 2: (a) p=0.66, (b) p=0.79 

Finally, Figure 8 illustrates that if the PD gains are switched to their optimal value as 
the auxiliary mass moves into gain scheduled region 2, effective housing attenuation once 
again is achieved. Figures 8a and 8b show housing attenuation of 5.7 dB and 8.3 dB for 
P=0.66 and p=0.79, respectively. 
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Figure 8: Housing FRF ( % ) Using Optimal Gains from Region 2 and 

Operating in Region 2: (a) p=0.66, (b) p=0.79 

Figures 6-8 clearly show the potential benefits of gain scheduling across the regions of 
the air gap in order to maintain EMA performance at larger actuator strokes. These results 
show a potential increase in the test rig effective actuator stroke by a factor of about 1.7 due 
to gain scheduling. However, it must be restated that these results (Figures 6-8) are for small 
perturbations about the linearized point in each gain scheduled region. The results, therefore, 
neglect the effect of actuator dynamics as the auxiliary mass moves from one region to the 
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next. These effects will be studied in future work by modifying the rig to include a large 
unbalance force applied to the housing. 

SUMMARY 

EMA's rely upon large excursions into the actuator air gap to produce sufficient 
inertial forces for housing attenuation under large disturbances. Since magnetic actuators are 
inherently non-linear with displacement, controller gains derived using models linearized 
about the air gap center become non-optimal with large excursions. This paper presented 
optimal gains for an extended linearization of the actuator air gap for gain scheduled PE) 
control. Experimental results showed the potential to increase actuator stroke by a factor of 
1.7 over the case of conventional PHD control, while maintaining housing attenuation. 
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