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A B S T R A C T 

The geometric design of radial magnetic bearings is considered using an optimal design procedure. 
General expressions are derived for the performance variables of magnetic bearings of common geometry. 
An optimization algorithm is used to arrive at a solution that maximizes the load capacity subject to 
thermal and other mechanical constraints. The optimal solution is discussed with respect to the effect of 
various geometric parameters on the load capacity. 

I N T R O D U C T I O N 

Magnetic bearings for the purpose of supporting rotating machinery are attracting increased research 
interest in recent years as evidenced by the number of publications (Allaire, 1994), (Schweitzer et al., 
1994). They have several advantages over conventional bearings including reduced friction; moreover, the 
fact that they can be controlled in an active control loop is especially advantageous since proper design 
could accomplish reduction of vibration and noise. 

Although a number of papers have appeared on the science and application of magnetic bearings, 
most of them do not deal with the mechanical design aspects but instead deal with other issues such as 
controllability. In fact, the thermal aspects of magnetic bearings have received very little attention with 
the exception of (Jones and Nataraj, 1997). 

In an attempt to design radial magnetic bearings for a heavy shaft, we found that the problem of 
a high load capacity conflicted with having to satisfy thermal requirements. Conventional attempts to 
select the geometric parameters of the magnetic bearing led to either an insufficient load capacity or a 
bearing that was too hot to meet the insulation specifications. This led to the need for an optimal design 
procedure that is presented in this paper. 

M A T H E M A T I C A L D E V E L O P M E N T 

ELECTROMAGNETICS 

Figure 1 shows a typical radial bearing with some of the nomenclature used in the analysis presented 
below. In the following treatment, we assume that the radial bearing with JVp poles can be modeled 
accurately by considering each pole-pair separately, and then by adding the force contributions. This is 
the most common approach in magnetic bearing literature. 

Considering each pole-pair, we assume that the magnetic field is uniform. Using Ampere's Law 
(Woodson and Melcher, 1968), the magnetic flux density follows to be (for the A;th pole-pair), 

B = < ^ (1) 
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Figure 1: Radial Bearing Nomenclature 

and the magnetic path length, 4 is given by 

4 = — + 2gk 

where, 
27r 

4e = 2t + — (r2 + n) 

(2) 

(3) 

The gap between the pole faces and the rotor is a function of the rotor displacement {v,w), and is given 
by 

9k = Qo-vcostpk - wsin0 f c. (4) 

go is the nominal gap, 4>k is the angle of the centerline of the pole-pair with respect to the y-axis. 
The force exerted by the fcth pole-pair on the rotor is then given by 

- poN 2 A a . 2 
F k = — — l k cos 

1 
where, 

/ 4 ( 2 f c - l ) 1 \ 

(5) 

(6) 

With a differential driving mode (Schweitzer et al., 1994) the currents supplied to the four quadrants 
are as follows. 

h = H + icyO + icy 

12 = H + iczo + icz 

h = ib- icyO - icy 

h — H- iczo - icz 

(7) 

(8) 

(9) 

(10) 

Here, ib is the bias current, (icyo,iczo) are the currents supplied to offset the static load in the (j/,*) 
directions, and (icy(t), icy(t)) are the control currents in the (y,z) directions that are determined by the 
control circuit in response to the dynamic motion of the rotor. 

We next expand the forces in a Taylor series about the undisturbed equilibrium position (v = 0, w = 
0,i = io). For example, 

F - F + d F v Fy - F v ° + -fo v + 
dFu 

dw 
w + 

di cy 
icy + 

dFv 

(11) 
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Some involved algebra and use of trigonometric identities (Gradshteyn and Ryzhik, 1980) such as 

n 

^ sin(2A; - l )x = [sin(na;)]2coseca: (12) 

" 1 
cos(2fc - l )x = - sin(2nx)coseca; 

leads to the following. 

where, 

FyQ — 
V2 »oN2Aa 

Similarly, 

^ 0 = 

= HoN2A, 

V2 HoN2Aa 

2 ibiyO 

Km. — 

sin(iT/Np) 

(13) 

(14) 

(15) 

(16) 

In this paper, we assume that a static load exists only in the ^-direction, and since our system has a large 
static load which we would like the bearing to support, we define the load capacity of the bearing to be 
Fzo. If a large side-load exists, or if a large dynamic load were expected, then the load capacity would 
have to be defined differently. 

The position stiffnesses are evaluated from the following expressions. 

K - d F z 

K p y z - dw 

Kpzz — — 

dw 

(17a) 

(17b) 

After some manipulations we get the following expressions. 

Kpyy — 

+ (il + ilo) - 2Bm{L/Np)). 

+ 
1 

16 2sm(4ir/Np)J 

K, pyz — K p z y — 0 

K, 
4K„ 

Pzz 

+ 

(18) 

(19) 

(20) 

Note that the position stiffness terms are negative which indicates that the magnetic bearings are 
inherently unstable. The controller gains would have to be sufficiently large to overcome this negative 
stiffness. Also, a control circuit failure would result in catastrophic damage to the bearings (and possibly 
the shaft); hence a set of suitably designed backup bearings is an absolute necessity. Also, the cross-
coupling terms are zero because of certain simplifying assumptions we make about the magnetic field. 

The current stiffnesses are evaluated from (for example) 

K - ^ y 
^ ' diy 

After some algebraic manipulations, we get the following expressions. 

( JL \ ^ 
\ N P ) sin(7r 

K, tyy = K i z z = K m i b cos 
/NP) 

Kiyz — Kizy = 0 

(21) 

(22) 

(23) 
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THERMAL ANALYSIS 

A nodal network lumped parameter method was used (Palm, 1983) to estimate the temperature rise 
in the bearings. Although not as accurate as a detailed distributed parameter model such as in (Jones 
and Nataraj, 1997), this method does give us a reasonable estimate. In addition, since it formed a part 
of the optimization code it had to be computed several hundred times, and speed of computation was an 
issue that could not be ignored. 

Essentially, we assume that there are three thermal subsystems at uniform temperatures: the copper 
coils, the insulation, and the iron core. The air is assumed to be at a certain temperature, and the heat 
transfer coefficient (for convection) is estimated from handbooks (Baumeister et al., 1978). It should be 
noted that it is very difficult to accurately estimate these numbers from theory without an experimental 
corroboration. The heat generation is from the electrical current in the coils (which would be a maximum 
of twice the bias current). Then, the model reduces to the following linear algebraic equations. 

R l fii T fl2 ^ Rs 

' Ten ' (24) 

where, Tcu is the copper coil temperature, 7>e is the temperature in the iron core, To is the ambient 
temperature, P is the power generated, and the Ri are the thermal resistances computed from conduction 
or convection coefficients and the areas available for heat transfer. Note that in an optimal design 
situation, each new feasible design will result in different heat transfer areas which will affect the heat 
transfer rates. 

The thermal resistances as functions of the system parameters are as follows. 

Ri = t i / iAnki ) R 2 = l / ^ i A f e i ) 
i?3 = lA/nAjrea) Ri = l/(h3Ai2) ^> 

where, the areas for heat transfer are given by 

An = 2tl Ai2 = An / 9 f n 

A F e l = 2(pt + (r5 - r4)(j>) A F e 2 = s 2 Z + p Z ^ 

Here, ki is the conduction coefficient for the insulation material, and hi are the various convection 
coefficients. 

OPTIMAL DESIGN 

The design of the bearing was cast into the following problem. 

Minimize {-Fzo) 

subject to the following constraints. 

• Insulation temperature, Tcu should not exceed a stated maximum (T^oa;). 

• The magnetic field, B should be below the saturation limit, Baat of the magnetic material. 

• The number of turns of wire, JV should be less than the maximum, N m a x that can be wound on 
the pole. 

• The outer radial ring of the stator, rs should be greater than a minimum value ( r 5 i m j n ) . 

A detailed look at the geometric parameters of the magnetic bearing and the equations presented 
earlier reveals that only a handful of them are independent. The other parameters are determined as a 
function of these independent parameters, which are called design variables in the context of optimization. 

Hence, the design variables were chosen to be the bias current {it) , the nominal gap {go), the ratio of 
the outer radius of the stator (rs) to the shaft radius ( r i ) , the ratio of pole width to its depth (p/t), the 
ratio of pole width to the slot width (p/si), and the number of poles (JVp). Each of these design variables 
is also subject to lower and upper limits. 
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The above problem is a constrained minimization problem. Although the problem falls into the 
category of what is called shape design which is best solved using special solution algorithms (Barba 
et al., 1994), the present study used a standard nonlinear optimization algorithm called the Sequential 
Quadratic Programing (SQP) method (Branch and Grace, 1996). The gradients of the objective function 
and the constraints with respect to the design variables were computed by finite differences, and an 
estimate of the Hessian of the Lagrangian was updated at each iteration using the Boyden-Fletcher-
Goldfarb-Shanno (BFGS) formula. For details about the optimization algorithms the reader is referred 
to the references cited in (Branch and Grace, 1996). 

N U M E R I C A L R E S U L T S 

The constraints were as follows. 

1. Ti < 1500C 

2. a > 1.1 

3. 2it < Isat 

4. N < JV m a x 

The first constraint specifies that the insulation temperature should be less than 1500C, which is a fairly 
standard limit on most commercial insulation. The second constraint ensures that the outer ring has 
sufficient structural strength. The third constraint states that the total current in any of the coils should 
not exceed the level at which magnetic saturation can occur since that would lead to a severe performance 
impairment of the bearing. The last condition ensures that the number of turns of coil is not so large 
that it can not be wound on the poles. Both i s a t and i V m a x are determined dynamically in the optimal 
process since they will change when the shape of the bearing changes. 

In addition, the following lower and upper limits were used for the design variables. 

1. 4 < i t < 10 

2. 0.1 < f < 2.0 

3- 0.1 < ^ < 0.9 

4. 10 mil < go < 125 mil 

5- 1.1 < j * < 1-5 

Some of the thermal and magnetic properties assumed for the analysis are listed in Table 1. They 
were mostly taken from standard sources such as (Baumeister et al., 1978). 

Convection coefficient for face area 4 W/m* K 
Convection coefficient for enclosed area 4 W/m 2 K 
Conduction coefficient for insulation 0.16 W/ m K 
Ambient temperature Ta 200C 
Magnetic permeability in space Ho 47r x IO" 7 

Relative permeability Mr 3000 
Derating factor 0.9 

Table 1: Some parameter values used in the analysis 

The optimization code was run for several values of Np in multiples of 8. Note that if the number 
of poles is too large the air gap may need to be too small for practical applications. The small gap 
is required to assure reasonable flux linkage to the rotor and to avoid flux linkage between adjacent 
bearing poles. In any case, irrespective of the number of poles, it was assumed that the same current 
was supplied to an entire quadrant using a differential driving mode. An individualized current supply, 
although complicating the control system, might be more advantageous and could well change the design 
configuration. 
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p/t 2 
sl/p 0.64046 
r2 / r l 1.1 
r3 / r l 1.1003 
r4 / r l 1.3636 
r5 / r l 1.5 
Number of poles 8 
Width of the bearing 0.5 m 
Bias current 5.7105 A 
Nominal gap 10 mil 
Number of turns per pole 57 
Temperature of winding 146.3435 C 
Static current (z) 7.778 A 
Nominal inductance 2.1168 H 
Saturation load 0.73419 
Current Stiffness 0.12857 
Position Stiffness (y) -0.55262 
Position Stiffness (z) -1.5778 

Figure 2: Optimally designed bearing with 8 poles 

Three optimized configurations are shown in Figs. 2-4. Some of the key parameters that correspond 
to each of them are also shown in the adjoining tables. It should be mentioned that the parameter values 
are all shown in non-dimensional form in the figures and tables. Hence, a casual look at the figures might 
be misleading; for instance, the slot widths might seem very small, although in fact they are not. Note 
that the load capacity, stiffness and other similar quantities have also been scaled by the static load and 
are non-dimensional. 

Although it is especially difficult to get optimal solutions for larger values of JVp, such solutions may 
lead to larger load capacities and hence may be desirable. Note that the last case presented (JVp = 32) 
is not really feasible since the temperature of the insulation exceeds the stated maximum. Still, it is 
presented as a possible starting point for an improved design iteration. 

The optimization process was highly sensitive to initial guesses and the results presented here are 
a result of an extensive numerical investigation. Still, it should also be noted that the problem has a 
number of local minima and it is almost impossible to guarantee that the solution obtained is a true 
global minimum; in other words, it may be possible to get an even higher load capacity starting with 
the final converged solution and using some engineering judgement along with more tinkering with the 
optimization algorithms. 
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P/t 2 
sl/p 0.11111 
r2 / r l 1.1 
r3 / r l 1.1003 
r4 / r l 1.2947 
r5 / r l 1.5 
Number of poles 16 
Width of the bearing 0.5 m 
Bias current 4 A 
Nominal gap 10 mil 
Number of turns per pole 81 
Temperature of winding 140.7606 C 
Static current (z) 1.946 A 
Nominal inductance 3.1556 H 
Saturation load 2.0554 
Current Stifihess 0.51386 
Position Stiffiiess (y) -1.9967 
Position Stiffiiess (z) -2.4693 

Figure 3: Optimally designed bearing with 16 poles 
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p/t 0.53948 
sl/p 0.04593 
r2 / r l 1.1 
r3 / r l 1.1002 
r4 / r l 1.4831 
r5 / r l 1.5561 
Number of poles 32 
Width of the bearing 0.5 m 
Bias current 3.9439 A 
Nominal gap 9.7792 mil 
Number of turns per pole 80 
Temperature of winding 166.662 C 
Static current (z) 1.7951 A 
Nominal inductance 1.6719 H 
Saturation load 2.1971 
Current Stiffness 0.55708 
Position Stiffness (y) -2.1761 
Position Stiffness (z) -2.6269 

Figure 4: Optimally designed bearing with 32 poles 
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The following observations result from the numerical investigations. 

• In general, as iVp, the number of poles increases, it gets more difficult to get a feasible solution that 
satisfies all the constraints. 

• The nominal gap tends to the lower limit value for all of the investigated cases. 

• In general, as the load capacity goes up, so does the current stiffness, Ki. 

• As the load capacity goes up, the negative position stiffnesses (which are destabilizing) also go up. 
It may be noted that since we have a correction current to account for the static load in the z 
direction, \Kpzz\ > \KPyy\. 

• The optimal slot width tends to a small quantity in general. Moreover, as the number of poles is 
increased, this tendency gets intensified; i.e., the slot widths (in relation to the pole width) get to 
be smaller with larger number of poles. 

In the above analysis, the width of the bearing was held to a constant value since the thermal as 
well as the electromagnetic model are simplified and limited to two dimensions. A more detailed design 
procedure should include the width as a design variable. In addition, a lumped parameter steady-state 
thermal model such as the one used in the current study has its limitations. For example, it will not predict 
the temperature variations in the iron core, which can be substantial. A detailed thermal model on the 
other hand can add enormous computational cost and complexity to the problem since the optimization 
process typically involves hundreds of iterations. 

The current and position stiffnesses were not a part of the objective function or the constraints in the 
current study. In our physical system, the load capacity (and not the stiffnesses) was a critical issue and 
hence was used as the objective function. However, for other situations, they may well be required to be 
in certain ranges in which case they would have to be integrated either into the objective function or the 
constraints. Clearly, whether the solution is optimal depends upon our specification on what we want to 
be a maximum or a minimum. In any case, it should be clear that a procedure such as the one outlined 
here would be able to provide an optimal solution when design constraints and objectives other than the 
ones considered here become important. 

C O N C L U S I O N 

This paper dealt with the geometric design of radial magnetic bearings. General expressions were 
derived for the performance variables of magnetic bearings of standard geometry. Several key independent 
parameters were identified as design variables. An optimization algorithm was used to arrive at a solution 
that maximized the load capacity subject to thermal and other mechanical constraints. 

The problem is a difficult one with several local minima and no clear global minimum. It is by no 
means clear that what we presented in this paper are the globally best solutions. Since the constraints 
were quite stringent, even a feasible solution is not very trivial. It should be borne in mind that it is 
also possible to pose a problem that has no mathematical optimum and whether an optimal or even a 
feasible solution exists depends strongly on the constraints that have been specified. In fact the current 
study was motivated by the fact that the techniques in the literature were not adequate to design the 
bearings for our objective. What this paper does present is a general procedure that makes it possible 
to use optimization techniques to obtain the best possible solutions when even a feasible solution would 
not be obtained by conventional techniques. 

Improved thermal (as well as possibly electromagnetic) models when integrated into the optimal 
design process outlined in this paper would considerably enhance the confidence in the results presented 
here. An experimental corroboration for the thermal model is being planned for the future and will be 
used to validate and correct the analytical model used here. 

Finally, as mentioned earlier, the design objective and the constraints may well be very different in 
other situations. In such a case, it is expected that a procedure such as the one outlined here would 
be able to provide an optimal solution (which could be quite different from the ones presented here). 
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