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ABSTRACT 

As described previously (R. F. Post, D. D. Ryutov, J. R. Smith, and L. S. Tung, Proc. 
of MAG '97 Industrial Conference on Magnetic Bearings, p. 167), research has been underway 
at the Lawrence Livermore National Laboratory on ambient-temperature passive magnetic 
bearings for a variety of possible applications. In the approach taken the limitations imposed 
by Eamshaw's theorem with respect to the stability of passive magnetic bearing systems are 
overcome by employing special combinations of elements, as follows: Levitating and restoring 
forces are provided by permanent-magnet elements that provide positive stiffnesses for 
selected displacements (i.e., those involving translations or angular displacement of the axis of 
rotation). As dictated by Eamshaw's theorem, bearing systems thus constructed will be 
statically unstable for at least one of the remaining possible displacements. Stabilization against 
this displacement is accomplished by using periodic arrays ("Halbach arrays") of permanent 
magnets to induce currents in close-packed inductively loaded circuits, thereby producing force 
derivatives stabilizing the system while in rotation. Disengaging mechanical elements stabilize 
the system when at rest and when below a low critical speed. The paper discusses theory and 
equations needed for the design of such systems. 

INTRODUCTION 

There are many examples of rotating machinery, e.g., flywheel energy storage systems 
(electromechanical batteries) where it would be highly advantageous to employ "passive" 
magnetic bearing systems. Compared to "active" magnetic bearings (those using position 
sensors, electronic amplifiers, and control magnets) passive bearing systems could be less 
complex, less subject to failure, and, possibly, far lower in cost. Passive magnetic bearings 
must, however, overcome the consequences of Eamshaw's theorem (Eamshaw, 1839) This 
theorem asserts the impossibility of statically levitating systems employing only permanent 
magnets or electromagnets with fixed currents. One approach, pursued by Argonne National 
Laboratory (Weinberger, 1991) and by other groups, is to employ superconducting elements in 
the bearing system. Owing to their diamagnetic and other characteristics, superconductors 
evade Eamshaw's theorem. This solution, however, necessarily involves the use of cryogenic 
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110 MAGNETIC SUSPENSION 

systems, with their attendant power requirements and complexity. 
Research has been underway for some time at the Lawrence Livermore National 

Laboratory to build a theoretical and experimental base for designing ambient-temperature 
passive magnetic bearings for various applications (Post, et. al., 1997) In brief summary of the 
working principles undergirding this particular approach to passive magnetic bearing systems, 
they are the following: 

(1) It is sufficient in the applications intended if stability is only achieved in the 
rotating state. That is to say, a centrifugally disengaging mechanical system can be used to 
insure stable support at rest (when Eamshaw's theorem applies). 

(2) Stable levitation results if the vector sum of the force derivatives of the several 
elements of the bearing system, for axial, radial, and tilt-type displacements from equilibrium, 
is restoring. In this way it is possible to achieve Eamshaw-stable levitation using systems 
composed of multiple elements, no one of which is by itself stable against all of these 
displacements. 

This article will present theoretical equations that we have developed to facilitate the 
design of Eamshaw-stable ambient-temperature passive bearing systems. Only brief comments 
will be made on the next level of stability-related problems encountered in rotating systems, 
rotor-dynamic instabilities. Our analyses of this latter problem (in the context of passive 
magnetic bearing systems), will be the subject of future papers. 

CRITERIA FOR EARNSHAW-STABILITY OF LEVITATED ROTORS 

We first define criteria that, if met, will insure the Eamshaw-stability of a rotor 
supported by a passive bearing system. Figure 1 is a schematic drawing of such a system, in 
this case shown with the axis of rotation being vertical. The magnetic bearing components, A 
and B, shown above and below the rotor, may be composed of sub-elements, as described later. 

Lilz wire conductor Halbach array r 

Figure 1 Figure 2 
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The combined characteristics of bearing components A and B are represented by stiffnesses 
K A and K B for lateral displacements (i.e., force derivatives with magnitudes -K A and -K B). 
For axial displacements bearing components A and B will be characterized by stiffnesses 
P A K A and PgKg. In the equations of motion of the rotor/bearing system we define transverse 
displacements of the center of mass by the variables x and y, and axial displacement by the 
variable z. Tilts of the axis can be characterized by two angles, 6X, 0y, representing tilts in the 
xz and yz planes, respectively. For small perturbations, lateral displacements of the axis in the 
bearings A and B can be represented as: 

xA = x + exd xB = x-0xd yA = y + eyd yB = y-eyd (i) 

Perturbations of the potential energy with respect to the equilibrium state can be written as: 

u _ K A x i ) K A y 2

A + K B x B + K B y i + (P AK A +P BK B)z^ 
2 2 2 2 2 

Using the Hamiltonian approach (Goldstein, 1950), and noting that the kinetic energy 
of the perturbations in the system, where we ignore gyroscopic effects, is a positive-definite 
quadratic form, one comes to the conclusion that the system is stable if and only if the 
potential energy (Eq. 2) is also a positive-definite quadratic form, i.e., if the following 
inequalities are satisfied (Goldstein, 1950): 

K A > 0, K B > 0, and ( ^ A K A + f ^ > 0 (3) 

Our task will be to find combinations of bearing elements satisfying these inequalities, 
recognizing that these conditions are more stringent than required in all situations. 

In summary to this point, achieving Eamshaw-stability in a passive magnetic bearing 
system is an exercise in defining a bearing system composed of various elements, no subset of 
which is required to be stable against all displacements from equilibrium. 

AXIALLY SYMMETRIC PERMANENT-MAGNET ELEMENTS 

To provide levitation and centering forces our bearing system utilizes axially symmetric 
bearing elements employing permanent magnet material. The simplest form of such elements 
are permanent magnets in the form of discs or annuli, magnetized in the axial direction and 
polarized so as either to attract or to repel. When facing each other, such elements in the 
attracting polarization provide radial centering, but are unstable against axial displacements, and 
vice-versa for the repelling polarization. Before presenting approximate analytical formulae for 
the forces and stiffnesses of such elements, we note a property of all axially symmetric 
elements. That is, the absolute value of the radial and axial stiffnesses of such elements for 
small displacements are in ratio of 1:2, while their signs are opposite. Thus, in calculating the 
axial stiffness of such an element one can be assured that the radial stiffness will be of opposite 
sign and of half the magnitude. A derivation of this result is given in the Appendix. 
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For the case of two equal-diameter magnetized discs with radius b (m.) and thickness h 
(m ), facing each other at a separation distance 2a (m ), where a < h and h « b, the magnitude 
of the axial force exerted by one disc on the other one is given approximately by Eq. (4) This 
equation was derived by integration of the force between two coplanar sheet currents, ignoring 
curvature effects, a valid assumption when a < h and h « b. (See the Appendix for a 
derivation of Eq. 4 and a discussion of the accuracy of the approximation used to derive it): 

zF 2 

F = 
_2Brbh 

z ~ 
^0 

|(l+a/h)ln[l+ayh]-(l+2a/h)ln[|<l+2a/h)]+(a/h)ln(a/h)| Newtons (4) 

Here B r (Tesla) is the remanent field of the permanent magnetic material (e.g., 1.4 Tesla for 
high-flux NdFeB magnet material), and \iQ = 4n x 10"7 hy/m. In the limit of zero separation 
between the magnets, the limiting axial force (for attracting magnets) becomes: 

Fz(max) = 21n(2) 
Br

2bh 
Newtons (5) 

L J 

The axial force derivative (negative of the axial stiffness) is (for attracting magnets): 

^ = ^{21n[|(l+2a^)]-ln[(a^)(l+a^)] Newtons/meter (6) 

For repelling magnets the magnitude of the force and of its axial derivative remain the 
same, but the signs of both change. Also, as noted, the magnitude of the force derivative for 
displacements transverse to the axis is half of that given by Eq. (6), and of opposite sign. 

One deduces from the -2:1 or 2:-l relationship between the axial and transverse force 
derivatives for repelling and attracting axially symmetric magnets that the best one can do with 
any combination of such elements is to achieve a neutrally stable state, i.e., one in which the 
force derivatives for both axial and transverse displacements exactly cancel at force equilibrium, 
a situation of no practical value. Using only such elements it is impossible to satisfy the 
criteria given by Inequalities (3) In his theses Basore (Basore, 1980, 1982) describes axially 
symmetric systems of such elements, interacting (upon displacement) with conducting 
elements. He concludes (op. cit., 1982) that for the type of system he considered the 
stabilizing effects (positive stiffnesses) he calculates for these interactions are too weak to be 
of practical value, so that for his systems active stabilization would be required. The passive 
stabilized systems that we will describe in what follows differ fundamentally from Basore's 
systems in that we utilize stabilizers employing periodic arrays of magnetic elements 
interacting with specially configured inductively loaded circuit elements, thereby achieving high 
positive stiffnesses with minimal parasitic losses in the undisplaced state. 

Equations (4) and (6) are but examples of the types of equations needed for the design 
of the systems to be described. There are, of course, other axially symmetric magnet 
configurations that could be employed, such as concentrically nested annular magnets, and 
circular-pole magnets energized by permanent-magnet material. The relative stiffnesses and 
forces of these alternate configurations could be determined analytically, by the use of 
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computer codes, or by measurements, and the data obtained plugged into the overall design to 
arrive at an Eamshaw-stable situation, employing the "stabilizer" elements to be described. 

HALBACH-ARRAY STABILIZERS 

To achieve an Earnshaw-stable system employing axially symmetric permanent 
magnets it is necessary to add another ingredient. That is, one must introduce at least one 
element that will have a ratio of transverse to longitudinal force derivatives that deviates from 
the -2:1 or 2:-l stiffness ratios of the axially symmetric elements, in such a way and of a 
sufficient magnitude that the bearing system taken as a whole can satisfy the requirements of 
Inequalities (3) or their generalizations (for example, in order to include gyroscopic effects). 

The stabilizer elements to be described utilize periodic arrays of permanent magnets, 
configured in "Halbach arrays", named after the physicist who pioneered their analysis and use, 
Klaus Halbach (Halbach, 1985). These configurations, employing only permanent-magnet bars 
in their construction, represent optimally efficient ways to assemble such bars, creating a 
strong periodically varying magnetic field at one face of the array, while nearly canceling the 
field on the back face of the array. Devised for use in particle accelerators and free-electron 
lasers, they also turn out to be ideally suited for the stabilizers described here. 

Halbach-array stabilizers take two geometrically different forms; "transverse" and 
"axial." Figure (2) is a schematic drawing of one form of a transverse stabilizer. A rotating 
Halbach array is shown surrounding a close-packed array of inductively loaded electrical 
circuits. The field from the rotating array produces a time-varying flux in each circuit. Above a 
low critical speed (determined by the circuit resistance and inductance), the induced current is 
phase shifted by nearly 90 degrees relative to the flux. This current, interacting with the 
rotating field, thereby provides a stabilizing force derivative for a system that would be 
otherwise unstable radially. The axial force derivative of such elements is very low, arising 
only from end effects, so that they do not contribute an appreciable destabilizing effect axially. 

Since they employ non-axially symmetric fields, and since they involve dynamic 
(induction) effects, Halbach-array stabilizers are not subject to the constraints of Eamshaw's 
theorem. Thus either alone, or in combination with axially symmetric permanent-magnet 
elements, they enable the design of Eamshaw-stable systems (Post, 1996) . 

The magnetic field produced by a N-pole Halbach array as a function of radial position, 
p < a, and azimuthal angle, <|>, is given by the following equations (Halbach, 1985): 

B P = B 0 

Bo = 

N-1 

cos(N40, B . = -B 0 

N-1 

sin(N(|>) (7) 

N 

.N-IL* W - N H 1 ^ ] } ' N > 1 (8) 

In these expressions the quantity a (m.) is the inner radius of the Halbach array, and b 
(m.) is its outer radius. In Eq. (8) the quantity M is the total number of magnets in the array. 
In Figure 2, and for the type of array shown, there are 4 magnets per pole (i.e., 4 magnets per 
wavelength in the azimuthal direction), so that M = 4N., i.e. N = 6 in the figure. 
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We consider circuits for the windings of the stabilizer in the form of rectangular 
"window frames." In the simplest form the outer leg of this rectangular circuit, located at 
radius Pj, corresponds to one of the conductors shown in the figure, while the inner leg is 

located at radius Pj < P2, as shown on the figure. We will also later consider a case where the 
window frames span the diameter of the stator, the wires overlapping at the ends (also shown 
schematically in the figure). 

The inductance of each circuit (self-inductance plus the effect of mutual inductance with 
adjacent circuits) is taken to be equal to L 0 (henrys), and its resistance is R (ohms). The 
conductor itself is litz wire. That is, it is composed of a multi-stranded bundle of fine strands 
of enamel-insulated copper wire. As later discussed, the use of litz wire greatly reduces the 
power losses associated with internal eddy currents in the wires. 

The current induced in the circuits by the rotating Halbach array can be calculated from 
the flux produced by the array fields (Eqs. 7 - 8). At low speeds the current leads the flux by 
90 degrees, resulting in drag forces but little repulsion. As the speed increases the phase lags 
until it approaches that of the peak flux, at which point the repelling force is maximal, and the 
drag torque is greatly reduced (varying inversely with the speed). The "transition speed," 
defined as the rotation speed where the repelling force has reached half its limiting value, is 
given by the relationship. 

N LLo. 
radians/sec. (9) 

For typical stabilizers, this transition speed can be as low as a few hundred RPM. If it is 
desirable to further lower the transition speed, inductive loading can be added to each of the 
circuits (we have used small powder-core toroids for this purpose). 

From the analysis the expression for the stiffness, of a stabilizer using the first type 
of windings, for displacements transverse to the axis of rotation, is: 

(2N-1)XM 
4P2 

B^ah2 

Ei 
Pi 

NN 1 

a J 

12N-1 

Newtons/m. (10) 

The quantity XM corresponds to the total number of circuits, and the quantity h (m.) is the 
axial length of the Halbach array bars. 

The analysis may also be extended to evaluate the ohmic power losses in the circuits 
relative to the stiffness. The expression derived is: 

K , _ N(N-1)L0 

Po 2Rp2 

1 

1 - fPi NN 

^ 2 , 

Newtons m"1 watt"1 

(11) 

When it is desirable to minimize the power losses associated with the stabilizer, a 
previously cited paper (Post, et. al., 1997) describes a version in which ohmic losses approach 
"zero" in the centered position. In this version, as noted earlier, the window-frame circuits 
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have their legs on opposite sides of the stator, and the Halbach array has an even order N > 2 
(N = 4, 6, 8 etc.). In this case there is flux cancellation in the centered condition and (except for 
residual currents arising from mechanical and magnetic tolerances associated with the Halbach 
array and the windings) the induced currents approach zero. For this case, the stiffness 
equation is: 

471 fBoh2N 

Ho I P 

n -^N-l 
C 

.a. 
Newtons/meter (12) 

Here the quantity c (m.) is the radius of the cylindrical stator. The quantity, P (m.), is the 
perimeter of each circuit. This term arises from an evaluation of the mutual inductance of 
adjacent circuits, assuming no additional inductive loading is used. As a result, and if high-order 
Halbach arrays are used (N » 4), the transverse stiffnesses attained can be high, in excess of 
107 Newtons/m. 

The stabilizers just described address the problem of stabilization of a bearing system 
that is unstable transversely, but stable axially. An example would be a rotor levitated 
vertically between two sets of repelling magnets. For cases that are stable transversely (for 
example when attracting magnet pairs or their equivalent are used) and unstable axially, planar 
Halbach stabilizers arrays can be used. In such cases a planar circuit array is positioned 
midway between two planar Halbach arrays, mechanically coupled to each other at their inner 
radii so that they rotate together (illustrated schematically in Figure 3), and oriented 
azimuthally so that their axial fluxes cancel on the surface of a plane midway between them. 
Thus, when positioned midway between the Halbach arrays no currents are induced in the 
circuits, but currents and restoring forces arise from any axial displacement from this position. 
The design equation derived for this case is the following: 

BLN 2 
K z = |bG(ab)-aG(aa)J Newtons/meter (13) 

In this expression a (m.) is the inner radius of the planar Halbach array, b (m.) is its 
outer radius, the parameters a a = Nh/a and = Nh/b, N c is the number of circuit wires, and 
the function G(a) is defined by the relationship: 

G(a) = [l + aln(a) + a(l - C)] , C = Euler's const. = 0.577.... (14) 

The quantity represents an effective mean value of the peak value of the magnetic 
field at the midplane between the two Halbach arrays at the inner radius, a. This quantity was 
calculated from results derived by Halbach (Halbach, 1985) for a linear array such as would be 
used in a "wiggler" in a free-electron laser. The result is given by (M = number of magnet bars 
in each array): 

Bop = 2Br 
1 - exp 

Nf 

a 
; ^ « ] e x p ( - N h / a ) Tesla (15) 
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The use of planar Halbach-array stabilizers would permit the design of compact, 
Earnshaw-stable, passive bearing "cartridges." Such a cartridge would be composed of one 
planar stabilizer nested between two axially symmetric permanent-magnet bearing elements 
utilizing attracting pairs of magnets (positive stiffness transversely, negative stiffness axially). 
In such a cartridge the (unstable) axial forces of the two permanent-magnet pairs would buck 
each other, with the planar stabilizer providing axial centering to stabilize them. In the 
equilibrium position minimal power would be dissipated in the stabilizer, so that the parasitic 
losses of such a bearing cartridge could be very small. At the same time the cartridge as a 
whole would be relatively insensitive to temperature-induced changes in the magnetic field 
strength of the permanent-magnet pairs (assuming they were both at the same temperature), as 
the geometric symmetry of the arrangement would render the equilibrium position insensitive 
to such changes. 

EDDY-CURRENT LOSSES IN THE STABILIZER WINDINGS 

In the stabilizers described here the legs of the circuits adjacent to the Halbach arrays 
are exposed to a rotating vector magnetic field, whether or not there is cancellation of the flux 
linked by these windings. This rotating field will induce residual eddy currents in the circuit 
wires, leading to losses. However, since eddy-current losses vary as the fourth power of the 
diameter of wire strands, the use of litz wire composed of many strands of fine wire can reduce 
these losses to the fractional-watt level. These losses in each litz wire strand are given by: 

Pec _ n 
L 4 

BWa4' 
Watts/meter of conductor (16) 

Here co (rad./sec.) = Na)0, where ci)0 is the angular frequency of the rotating system), co is the 
frequency of the rotating field of magnitude B (Tesla), a (m.) is the radius of the conductor 
strand, and p c (ohm-meter) is its resistivity. 

COMMENTS ON THE STABILIZATION OF ROTOR-DYNAMIC INSTABILITIES 

While the emphasis in this paper is on the design of Eamshaw-stable passive magnetic 
bearing systems, remarks are in order on the use of passive elements to stabilize rotor-dynamic 
modes. Two generically different techniques exist for stabilization: (1) eddy-current dampers, 
and, (2) anisotropic radial stiffness. The former involves, for example, stationary conducting 
sheets exposed to axially symmetric fields from rotating axially symmetric elements excited by 
permanent magnets, a technique employed, for example, by Fremerey (Fremerey, 1988). As 
derived in the previously cited paper (Post, et. al., 1997), stability against transverse whirl 
requires that the damping coefficient, P (Newtons m"1 sec.) should satisfy the equation: 

oc / K 
P > — stable, & o = y : M radians/sec. (17) 
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Upper Halbach array 

Planar conductor array 

Lower Halbach array 

wm 
1 k.-

l 
Copper or aluminum disc 

Figure3 Figure 4 

Here £20 is the natural frequency of transverse oscillations of the system for which the stiffness 
for transverse displacements is K (Newtons/meter) and the mass is M (kilograms). The 
parameter a (Newtons/meter) is the displacement-dependent drag coefficient (from whatever 
origin) that stimulates the transverse whirl. 

The damping coefficient, P, for eddy-current dampers consisting of thin conducting 
discs positioned between two axially-symmetric annular poles, as illustrated in Figure 4, is 
given by a simple expression (derived in the Appendix). Subject to the restriction that the 
width of the poles, (b-a), and the thickness of the disc, t, satisfy the inequality t(b-a) « 82 

(Smythe, 1939), where 8 (m.) is the skin-depth at QQ, the equation is: 

P -
TCt 

Bz

2rdr (Newtons m"1 sec.) (18) 

Here p (ohm-meters) is the resistivity of the material of the disc, and B z (Tesla) is the strength 
of the axial component of the magnetic field between the two poles. 

If the two annular permanent magnets facing are each other have a gap, g, between them 
that is small compared to the radial width of the pole, (b-a), the magnetic field between the two 
poles is roughly constant within the gap, out to the edges of the poles. In this case Eq. (18) 
reduces to the simple approximate form: 

P =r;[BzV-a2) 
2p L 

(19) 

The second whirl-stabilizing technique, believed novel to our approach, is to introduce 
anisotropic stiffness in the radial stabilizers. This result can be accomplished by modulating 
the spacing or the inductive loading of the circuits as a function of azimuth, or by using a stator 
of elliptical cross-section. As described previously (Post, et. al., 1997), the degree of 
anisotropy required for this type of stabilization depends on the magnitude of the 
displacement-dependent drag terms, as follows: 



118 MAGNETIC SUSPENSION 

K., 1 -
2 V axav 

K., stable, K x < Ky (20) 

Here a x and a y (Newtons/meter), the displacement-dependent drag-force terms, have been 
assumed also to be anisotropic for generality. When these terms are small (as they are in many 
situations), the degree of anisotropy predicted to be required for stabilization is minimal. In 
addition to the stabilization introduced by anisotropy, displacement-dependent ohmic losses in 
the stabilizer windings can be expected to introduce some damping of transverse oscillations. 

EXAMPLE SYSTEM DESIGN 

In this Section we outline the design of a vertical-axis system supporting a mass of 10 
kilograms. (F z = 100 Newtons). The rotor will be located between two repelling magnets, so 
that the system is stable axially but unstable radially. Radial stabilization is then to be achieved 
by using upper and lower Halbach-array transverse stabilizers. 

The parameters of the upper and lower repelling bearing sets are chosen by requiring 
that they both have the same (unstable) transverse stiffness, subject to the requirement that the 
difference in their axial forces should equal 100 Newtons (to provide levitation). We further 
assume that the ratio of the half-gap to the magnet thickness, i.e., the parameter (a/h), is the 
same for both magnet sets. It then remains to select the radius, b, and the relative thickness of 
the upper and lower magnet sets in order to satisfy the two requirements. 

We first evaluate the equations for the axial force, Eq. (4), and Eq. (6) for the axial 
stiffness in the case that the parameter (a/h) is fixed at the value 0.1 (thus satisfying the small-
parameter assumption with respect to (a/b) made in deriving the equations): 

F_ (a/h = 0.1) = 0.97515 
B2bh 

1̂ (3/11 = 0.1)= 1.1856 

L Ho J 
Br

2b 

LHoJ 

Newtons 

Newtons/meter 

(21) 

(22) 

Recalling the 2:-l ratio of stiffnesses for axially symmetric permanent-magnet elements 
that was discussed in Section IH, we have for the transverse stiffness: 

K J a / h ^ 0.1) = -0.5928 
LHoJ 

Newtons/meter (23) 

We will also employ Eq. (5), defining the maximum (repelling) force, occurring as the 
gap, a, approaches zero. Putting in numerical values for the coefficient we have: 

F 7 (max) = 1.3863 
Bfbh 

L Ho J 
Newtons (24) 
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We further assume that the relative magnet thickness of the lower magnet element (the 
one that provides the levitating force), is hft = 0.2, and that the remanent field B r = 1.25 Tesla 
(standard-grade NdFeB material). For the upper magnet we will leave the thickness, h, as a 
variable to be determined. With these assumptions Eqs. (21), (23), and (24) become: 

F z (a/h = 0.1, h/b = 0.2, B r = 1.25 T ) = 2.4250 x 105 b 2 N (lower mag.) (25) 

F z (max) = 3.4474 X 105 b 2 N (lower mag.) (26) 

Fz(a/h = 0.1,B r= 1.25 T ) = 1.2125 x l 0 6 b h N (uppermag.) (27) 

1^ (a/h = 0.1, B r = 1.25 T) = - 7.3709 x 105 b Newtons/meter (28) 

Imposing the requirement that the transverse stiffness of both the top and bottom 
bearing elements should be equal implies that both magnets should have the same radius (their 
thicknesses will not be equal, however). The common radius is determined by establishing a 
value for F z (max). To provide a robust levitating force we take this maximum value to be 

400N (4 times the weight to be levitated). With this assumption one finds for the magnet radii, 
b = .03406 m. The thickness of the upper magnet element is determined by imposing the 
condition that the net levitating force should be 100 Newtons, yielding the equation: 

2.4250 x 105 b 2 - 1.2125 x 106 b2(h/b) = 100 Newtons ^ (29) 

Inserting the previously determined value of b we find (h/b) = 0.1289, for the upper 
magnet, to be compared to (h/b) = 0.2 for the lower magnet. Both of these values are 
consistent with the assumption made in the derivation of Eqs. (4) and (6), i.e., h « b. 

To complete the design we need only determine parameters for radial stabilizers whose 
positive transverse stiffness sufficiently exceeds the negative stiffness of the levitator magnets 
to yield a desired net positive stiffness value. Inserting the value of b into Eq. (28) we find for 
the negative stiffness of each magnet set the value: 

1^ (a/h = 0.1, B r = 1.25 T) = -2.511 x 104 Newtons/meter (30) 

I f we employ stabilizers of the type represented by Eqs. (7),(8), and (12) with the 
parameters B r = 1.25 T, a/b = 0.8, h = 0.05 m. , P = 3h, N = 6, and c/a = 0.95, we obtain a 

positive stiffness value 1^ = 4.2 x 105 Newtons/meter, or about 16 times the negative stiffness 

of the levitating elements. It should be apparent that the stiffness of the Halbach array 
stabilizers needed to overcome the negative stiffnesses of the levitating bearings can readily be 
achieved, thus satisfying the Eamshaw-stability requirement, as given by inequalities 3. 

SUMMARY AND CONCLUSIONS 

We have outlined the theory and presented design equations that can be used to 
perform the design of ambient-temperature passive magnetic systems that satisfy criteria for 
Eamshaw-stability. We have further sketched some approaches to the stabilization of rotor
dynamic instabilities in such systems. We have concluded the discussion by using the design 
equations to arrive at an example set of parameters for a vertical-axis system whose mass is 10 
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kilograms, finding reasonable values for all of the required parameters. The results presented 
are being incorporated in models that will explore practical issues that are sure to be 
encountered in converting the theoretical results into working systems. 

Woik performed under the auspices of the Department of Energy by the Lawrence Livermore National Laboratoiy 
under Contract W-7405-Eng-48 

APPENDIX 

(1) Proof of the 2:-l, and -2:1 ratio of stiffnesses of axially symmetric permanent-
magnet bearing elements: 

Consider a circular current filament carrying current j 0 , coaxially located in the axi
symmetric field of a permanent-magnet disc, B p, B z. We prove the hypothesis for this case. 

The general case follows by superposition. The stiffnesses are given by the equations p, z, 
x are unit vectors): 

In 
aB„ dF, 

dz 

271 

= -K z = de£-V[(jJxBD

Ap)-£] = -

ft 

a B p " 
de = -27Cjc 

dz 
(Al) 

dx 

271 

d e i V [ ( j 0 ^ x B z

A z ) i ] = 

2n 

cos2(e)d8 z = TC Jo 
as. 

(A2) 

aBz as 
The proof follows from the fact that V x B = 0, i.e. — = . 

dp dz 

(2) Derivation of the approximate equations for the force and stiffness of axially 
symmetric bearing elements consisting of two equal-diameter discs facing each other: 

The radius of the discs is b (m.), the gap distance is 2a (m.), and the thickness of each 
disc is h (m.). Curvature effects are neglected, implying that a < h and h « b. The 
magnetization of each disc is represented by a surface amperian current, j 0 (amperes/m). In 

terms of the remanent field , B r (Tesla), j 0 = B/IIQ. The force is obtained by integrating the 
force between two filamentary amperian surface currents over the vertical surface of the two 
magnets. The axial force per meter of circumference of the disc is given by the equation: 

.2 a+h a + h 

F. =-^r Jdu Jdv ^ Newtons/meter 
2K 

a 
(A3) 

a 
Performing the integrations in Eq. (A3) and inserting the definition of the amperian 

surface current density in terms of the remanent field and of the circumference in terms of the 
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the radius, b (m ), there results the following approximate expression for the axial force 
between the two discs in the limit a < h and h « b: 

2Br

2bh 

Ho <• 
F, = ~ | (l+a^i)ln[l+ayli]-(l+2ayli)ln[|<l+2a^)]+(a^)ln(a^)} Newtons (A4) 

Expressions for the limiting force as the gap approaches zero, and for the force 
derivative, dFz/dz, are obtained from Eq. (A4) by passing to the limit a = 0 for the former and 
by differentiation with respect to 2a for the latter. 

As a check on the accuracy of the approximation used in deriving Eq. A4, a comparison 
was made between a result obtained by utilizing the vector potential of a circular loop current 
to calculate the radial component of the magnetic field. From this field value the axial force 
exerted on an adjacent current loop can be evaluated by integration. For the case of two surface 
currents of vertical thickness, h = .001b, separated by a gap 2a = .02b, Eq. A4 was found to 
agree within about 1 percent with the "exact" result obtained using the vector potential. 

To model amperian surface currents of much larger vertical height, h = 0.05b, separated 
by a larger gap, 2a = 0.05b, three loop currents were used to model each surface current, each 
loop carrying 1/3 of the total current. These loops were located at the top, middle, and bottom 
of the space occupied by each surface current in order to simulate its presence. In this case the 
agreement between the approximate formula and the "exact" one using the three-fold array of 
loop currents was within 5 percent. 

The force equation that was derived from the vector potential of an amperian current 
loop and integrated numerically to obtain the above results is given by the expression: 

. 2n 

2H o J 

ude 
3/2 Newtons (A5) [2(l-cos0) + u 2] 

Here u = z/b, with z being the axial separation between the planes of the current loops. 

(3) Abbreviated derivation of the damping coefficient for eddy-current dampers: 

For a time-dependent transverse displacement (relative to the disc) of the facing poles 
(see Figure 4) of magnitude % (m.), the varying field passing through the disc induces <|> and r 
components of a divergence-free electric field satisfying the equation: 

F ^ - T ^ - L A J a T ^ ( A 6 ) 

The solution of this equation, subject to V- E = 0, has the form 

E + = E^ttcosfo); E r= E^Osin^) (A7) 
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where the functions E ^ r ) and E ^ r ) satisfy the differential equations 

1 d Erf HB 

r LdtJ dr 
d 

Eliminating E^ and solving the resulting equation for E ^ one finds expressions for both these 

quantities in terms of integrals: 

ExO " ^ ^ J ' A O j ) * , Ê Q = (d$/dt)Bz - B ,̂ (A9) 

From these electric fields the dissipated power is found by integration by parts, and from the 
power (equal to friction force multiplied by velocity) the damping coefficient can be evaluated: 

P J 
B zrdr ( A 10) 
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