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Abstract: This paper investigates the effectiveness of a 
magnetic bearing when used as an auxiliary mass dynamic 
absorber. The system is modeled as a 2-DOF, lumped mass 
approximation with a linearized actuation force. The 
accuracy of force linearization for an AMB absorber is 
discussed. Performance of the absorber is quantified on the 
basis of response attenuation, required actuating force and 
robustness to uncertainty in the actuating force. 
Performance is assessed under constrained PD control and 
robust f.L-synthesized control approximated by DK iteration. 
Results indicate that magnetic bearings are plausible in 
such an application when implemented with higher order f.L
synthesized control. 

1 Introduction 

Figure 1 shows the general 2-DOF auxiliary mass dynamic 
absorber consisting of a main system with mass, M, 
stiffness, K l , and damping cl ' an auxiliary mass, m, and a 

control force, 1';. The objective of such an absorber is to 

attenuate the response of the main mass, Xl' to the input 

disturbance, d, by using the control force which actuates 
against the inertia of the auxiliary mass. 

Xl 

Figure 1: General Auxiliary Mass Dynamic Absorber 

The actuator which generates the control force can take the 
form of mechanical elements such as springs and dampers 
[1], [3], [5]. The actuator may also take the form of an 
actively controlled device such as a piezoelectric actuator 
[6] [7] or a magnetic actuator as investigated in this paper. 
The former configuration being termed passive control and 
the latter being termed active control [4]. 

Previous work in the area of passive control includes that of 
Den Hartog [5], who optimized the performance of the 
absorber using a single spring and damper pair as the control 

elements (such an arrangement is equivalent to ideal PD 
control). Under this form of control, for mass ratios, mIM, 
less than about 113, exceptional main mass response 
attenuation resulted at the cost of large relative displacement 
between the auxiliary and main masses. Such large relative 
displacements cause prohibitively large stresses in the 
mechanical control elements, making it difficult to 
implement such absorbers, practically. However, it was 
shown that for mass ratios greater than about 1/3, excellent 
response attenuation can be achieved with significantly 
smaller relative displacements. 

Previous work in the area of active control includes that of 
Rouch[7], who proposed the use of a piezoelectric actuator 
as the control element. In general, active control elements 
were found to be limited in stroke and force generating 
capability, essentially limiting the allowable relative 
displacement and reducing the effectiveness of PD control, 
even at larger mass ratios. Rouch was able to show the 
added effectiveness of higher order control by successfully 
implementing a deterministic LQR state-feedback control. 
The main benefit of the piezoelectric actuator in such a 
control scheme being high linearity, resulting in a well
known force displacement relationship. 

This paper investigates the use of a magnetic bearing as the 
control element in the auxiliary mass dynamic absorber. 
Issues including force-displacement-current non-linearity 
and relative displacement constraints due to the air gap are 
discussed. Response attenuation and required actuating 
force are assessed for the absorber under constrained PD and 
robust Il-synthesized control. 

2 System Modeling 

For implementation of an AMB as the actuator in an 
absorber, the system model must include the radial air gaps 
and the differential nature of the actuator. Figure 2 shows 
the schematic of the 2-DOF dynamic AMB based absorber 
with the auxiliary mass constrained to move internally to the 
main system by the gaps, gt and gb' Differential magnetic 

forces, F; and Pi" act on the top and bottom of the auxiliary 

mass, respectively. Such forces can be generated via a 
magnetic bearing constructed of two opposing horseshoe 
magnets. In such a configuration, the magnetic bearing 
"journal" is part of the auxiliary mass, and the magnetic 
bearing "stator" is part of the main system. The control 
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element in the absorber is then the magnetic force between 
the two masses, and the gaps gt and gb' are the bearing air 

gaps at the top and bottom magnets, respectively. 

d 

Ft 

¢~ 
Fh X2 Xl 

Figure 2: Model of An AMB Based Absorber 

The equations of motion for the absorber can be derived via 
Newton's method and are given as: 

(1) 

miz = F;, - F, (2) 

where all variables have been previously defined. Note that 
the motion of the system is constrained by the bearing air 
gaps. The instantaneous air gaps are related to the 
displacements by: 

(3) 

gb=gO+(XI-X2) (4) 

where go is the nominal air gap. Assuming the input 

disturbance is harmonic and considering only the forced 
system response, the constraint imposed by the air gaps can 
be written in terms of the frequency response of the relative 
displacement. Physically, each instantaneous air gap must 
be greater than zero. However, for magnetic bearings, the 
constraint is more restrictive as it is known that system 
instability and loss of performance occurs for large relative 
displacement. The constraint can then be written as: 

(5) 

where, Xr is the relative displacement and ~ is in the range 

O<~<l, which specifies the relative displacement to be some 
fraction of the nominal air gap. 

The top and bottom magnet forces can be combined into a 
single actuation force given below. 

~ct = F, - F;, (6) 

Finally, the foree-current-displacement relationship for the 
actuator force is approximated by the following equation: 

(7) 

where /10 is the permeability of free space, A is the cross 

sectional area of the magnet poles, N is the number of turns 
of wire in each magnet coil and I, and Ib are the total 

current in the top and bottom magnets respectively. Note 
that this force is nonlinear with applied current and relative 
displacement (in addition to eddy currents and hysteresis). 
Recall that previous results using unconstrained ideal PD 
control required a significant amount of relative 
displacement to attenuate response of the main mass. 

From the above development, there are two main challenges 
for the simplified AMB based absorber: 

it attenuating the main mass response in spite of the 
limit on relative displacement imposed by the air 
gap constraint; 

'" designing systems in which main mass attenuation 
is robust to the nonlinear actuating force. 

To determine the feasibility of overcoming these challenges, 
the approach taken is to linearize the actuator force and to 
use robust control methods to overcome the uncertainty of 
the actuator force. The actuator force can be linearized by 
dividing the current in the top and bottom magnets into a 
bias current, I B , and a differential perturbation current, 

+Ip, respectively. A multivariable Taylor's series 

expansion about the perturbation current and the auxiliary 
mass centered position, linearizes the actuation force as: 

F = F I - J~cll x - J~cll x - J~CI I +HOT (8) acl acl 0 dx I dx 2 JI p 
10 20 Po 

where HOT are the higher order terms and are neglected. 
Finally, the linearized actuation force is given by: 

(9) 

where, 

-4/1 AN2I2 4 AN2I 
K = 0 B K. = /1 0 B (10) 

p 3 I 2 
go go 

and where Kp and Kj are the bearing negative stiffness and 

current gain, respectively. Substituting eq. (9) into eqs. (1) 
and (2), defining a set of state variables as 

z = [xl' XI -- x2 ' xl' XI - x2 ]' , and using the main mass and 

relative displacements as the measured states, a state-space 
representation of the system is derived and given below. 

z = Az + Bpd + BJp 

y= Cz 
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Note that no sensor noise is included in the model as this 
paper focuses upon the uncertainty in the actuator with 
relative displacement. 

Assuming that the harmonic disturbance, d, has amplitude 
p", the low frequency or static displacement of the main 

mass can be expressed as: 

(16) 

where X.I is static displacement of the main mass. Using 

eq. (16), the frequency response of the absorber can be 
expressed in terms of the main mass and relative 
displacement amplification factors: 

..&= Xl (Kl)' ~= (XI -X2 )(KI ) (17) 
X.I p" X.I p" 

where the upper case letters indicate frequency domain 
quantities. Attenuation results are presented in terms of 
these amplification factors, which is consistent with previous 
work in this area. 

3 Control Formulation 

3.1 Control Objectives 

The control objectiv~s for the absorber are: (1) to levitate 
the auxiliary mass relative to the main mass (stability); (2) to 
attenuate the main mass response while satisfying the 
relative displacement constraint; and (3) to attenuate the 
main mass response in spite of the uncertain actuator force. 
To meet these objectives constrained PD and robust 11-
synthesized control are implemented and compared. 

3.2 Constrained, Ideal PD Control 

The PD control law takes the form: 

(18) 

where a and b are the proportional and derivative feedback 
gains. In order to incorporate the constraint of eq. (5) into 
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controller synthesis, the following dimensionless parameters 
are defined: 

(0 < a < 00) 

(0 < /3< 1) 
(19) 

where Xr is the maximum allowable relative displacement 

over frequency. The parameter a can be seen as a load 
parameter which models the effect of the low frequency 
component of the applied force, p", by comparing the 

resulting static displacement to the nominal air gap. As 
before, the parameter /3 specifies the fraction of the air gap 

in which the auxiliary mass is allowed to move. Note that 
the ratio ~/a. specifies the allowable Xr I XSI for the 

absorber. As the results will show, performance of the 
absorber under PD control is determined by this ratio alone. 
However, for the purposes of including the air gap constraint 
in terms of the static displacement in the problem, the 
parameters a. and ~ are used. 

Under ideal PD control, and given the polarity of the 
perturbation currents, stability of the system is guaranteed if 
the following relationships are satisfied: 

-Kp+aK; <0, b<O (20) 

therefore, for the closed loop system, the optimal 
constrained PD control gains can be found by solving the 
constrained optimization problem given below . 

(21) 

3.3 Robust, Il-Synthesized Control 

The basis of robust control is accurately modeling the 
system uncertainty using perturbations on the nominal 
model, and synthesizing controllers which perform in spite 
of the uncertainty. Complex perturbations, denoted fi(jm), 

are norm-bounded using the transfer function 00 -norm, 

Ilfi(jm)IL = supa[fi(jm)] (22) 
III 

and are normalized by stable minimum phase frequency 
dependent weighting functions, W(jm). The weighting 

functions are appended to the system model such that 
IlfilL ::;; 1 represents the range of uncertainty or a specified 

performance in the system. 

Figure 3: General Perturbation Representation 
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Perturbation locations are preserved during controller design 
by using the structured singular value, p., as a measure of 
the closed loop stability and performance. Considering 
Figure 3, the structured singular value of closed loop system 

M E Cnxn , for complex perturbations Ll E Cnxn , is defined 
as: 

1 
f.l(M):= (23) 

min«T(il):det(/ - Mil) = 0) 

where Ll is a member of the block diagonal set L\ . 
Computation of the structured singular value using eq. (23) 
is intractable, but bounds on Il can be computed for complex 
perturbations using the following relations [2]: 

maxp(rM) ~ f.l(M) ~ inf(DMD-1) 
reI DeQ 

(24) 

where, among others, D is any real, diagonal, pOSItIve 
matrix with a certain block diagonal structure. In general, 

Ll has the block structure Ll = [Llp,O;O,Llu] where Llu is the 

uncertainty and Ll p represents the performance 

specifications for the system. If M has the corresponding 

structure M = [Ml1MI2;M21M22]' then the following stability 

and performance tests result: 

f.ll!. (M22 ) < 1 

f.l1!.(Mll )<l 

f.ll!. (M) < 1 

Nominal Performance 

Robust Stability 

Robust Performance 

(25) 

(26) 

(27) 

where nominal performance is specified performance of the 
nominal plant, robust stability is stability of all uncertain 
plants, and robust performance is specified performance of 
all uncertain plants. 

Design of controllers in a Il framework is accomplished 
using the DK iteration method which approximates Il
synthesis. Figure 4 illustrates the open loop interconnection 
structure for DK iteration, where, m, are the measurements, 
c is the control input, u and q are the uncertainty inputs and 
outputs and d and v are the performance inputs and outputs. 

u 
v r--i q d 

c 

Figure 4: Open Loop Interconnection Structure 

Since the upper bound for p. in eq. (24) may be obtained by 
scaling and applying II.IL, DK iteration proceeds by finding 

a stabilizing H~ controller, K, and a scaling matrix, D, such 

that the following minimization occurs: 

min IIDF/P,K)D-111 
DeQ.K ~ 

(28) 

where Fi(P,K) is the lower linear fractional transformation 

between the open loop interconnection, P, and the stabilizing 
controller, K [2]. For the AMB absorber, Fi(P,K) is the 

complimentary sensitivity between the main mass and 
relative displacements and the input disturbance. 

Figure 5 shows the AMB absorber open loop 
interconnection structure with all weights and perturbations 
appended to the nominal plant Gnom(s) = [A,B;C,D] . 

~----'----d 

p(~ -----1 

I 
m I 

I 

Figure 5: Open Loop Interconnection Structure For The 
AMB Absorber, p.-Synthesized Control 

A performance weight is augmented to the system of the 
form ~(s) = [wxJ(s),O;O, wxr(s)] . This weight specifies 

performance on the closed loop complementary sensitivity, 
Txd , between the main mass and relative displacements and 

the input disturbance. In words, the performance 
specification is to attenuate the main mass response as much 
as possible given a specified amount of relative 
displacement. Using eqs. (16) and (19), the following limit 
on the relative displacement can be defined. 

Xr {3KJ -=-- (29) 
p" a 

Giving this specification a frequency shaping, the weighting 
functions, are given as: 

WxJ(s) = a 10 (s + 1000) , wxr(s) = wxJ(s) (30) 
{3 KJ (s + lO,OOO) 2 

where w;f(s) and w;;(s) are the specified upper bound on 

the responses of the main mass and relative displacements, 
respectively. 

Finally, an input multiplicative uncertainty models the 
uncertainty in the actuator force by specifying a 
multivariable gain margin at the actuator. A multi variable 
gain margin of 1.3 is specified by selecting an uncertainty 
weight of w.. = 0.3 . Assuming robust performance is 

achievable, this allows a +/-30% range on the nominal 
actuator force before loss of performance or stability. 



4 Results 

Results are presented for PD and /1-synthesized control of 
the AMB absorber with a mass ratio of mIM=0.5, a main 
mass natural frequency of 252 rad/sec, a spring constant of 
K) = 2944 lb/in, main mass damping ratio of 0.4% and a 

negative stiffness and current gain of -10,000 lb/in and 12 
lb/amp, respectively. A mass ratio of 0.5 was selected 
because previous results indicated good main mass 
attenuation with relatively small relative displacement for 
PD control. 

4.1 Constrained PD Control: General Solutions 
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Figure 6: Amplification Factors; (a) Main Mass (b) Relative 

Figure 6a shows the effectiveness of PD c~mtrol in 
attenuating the main mass response as a function of a and ~ 
for the nominal system. Figure 6b shows the resulting 
maximum relative displacement. Note there is a region 
where no further attenuation occurs regardless of the 
allowable relative displacement. At this point the problem 
becomes unconstrained and the global optimum is obtained. 
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Figure 7: Main Mass Response Attenuation, Dependence 
Upon Relative Displacement Under PD Control 

Figure 7 shows the main mass attenuation as a function of 
the maximum allowable relative displacement. As 
previously mentioned, all of the curves in Figure 6 reduce to 
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the curve in Figure 7. It is seen than that the maximum 
allowable relative displacement exclusively determines the 
main mass attenuation under PD control. However, Figures 
6a and 6b are useful in interpreting the results in the context 
of the AMB air gap. For instance, for a nominal radial air 
gap of 0.010", several illustrative cases may be constructed 
from the data of Figures 6a and 6b using eqs. (16) and (19). 

Table 1: Nominal Performance For Different a and ~ 
VI f A A' a ues or n Ir Gao of 0.010" 

Case 1 ease 2 Case 3 Case 4 

~ 0.25 0.25 0.90 0.90 

a 0.75 0.10 0.75 0.30 

p 22.1 2.9 22.1 8.8 0 

m~I~1 105 19 70.0 2.2 
x" 

m~I~1 0.25 2.5 1.40 3.0 
x" 

No 110 110 110 110 
Absorber 

Table 1 shows four such cases which include maximum 

force accommodation, ~ , for cases 1 and 3, and maximum 

main mass attenuation for cases 2 and 4, for values of 
P=0.25 and P=0.9. Also shown is the maximum 
amplification factor, X1IXSh for the main mass displacement 
with no absorber, for comparison. Given the non-linearity of 
the actuator with increasing p, the case of P=0.25 is more 
appropriate for magnetic bearings. 

The results indicate that the constrained AMB absorber is 
only effective in the lightly loaded region (small a). Note 
that these results say nothing about robustness of the PD 
controlled system to the uncertain actuating force. 

4.2 PD and /1: Nominal Performance 

A comparison of system performance between PD and /1-
synthesized control is made for all absorbers with P/a=0.3. 
For PD control, the constrained optimal gains were found to 
be a=-886.9 and b=-0.241. Figure 8a shows the resulting 
amplification factors for this case under PD control. Figure 
8b shows the same for the nominal system under /1-
synthesized control. Also shown in Figure 8b are the upper 
bound on the amplification factors as specified in the 
performance weight. 

Figures 8a and 8b indicate that in the nominal case, the /1-
synthesized controller attenuates the main mass response 
twice as much as the PD control for the same amount of 
relative displacement. In both control cases, the required 
maximum actuating force per unit disturbance amplitude was 
F'"ct / ~ = 10.8 lb . This presents another challenge for 
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magnetic bearings in this application due to their relatively 
low specific load capacity. 
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Figure 8: (a) Response for ~/cx=3.0, PD Control, 
(b) Response for ~/a=3.0, Jl Control 

4.3 PD and Jl: Robust Performance 

Robust performance of the system under the Jl-synthesized 
control was achieved for the specified weights as Jl=1.01 
resulted from the robust performance test of eq. (27). The 
resulting H_ controller has 14 states where the plant order is 

only 4, illustrating the tradeoff of higher order control. 

One key question is how the closed loop system behaves 
under each type of control for variations in the actuator 
force. In an attempt to quantify this, the effect on system 
stability and performance of variations, Dp and 0;, in Kp 

and K;, respectively, were investigated. 

Referring to Table 2, stability and performance for the 
nominal system with 0 p = 0, 0; = 0 is shown for 

comparison. For the case of PD control, stability under the 
variations is easily determined using eq. (20). The 
maximum variation is 6.4% independently or 3.1% in 
opposite directions, simultaneously, before the PD 
controlled system becomes unstable. Note the performance 
and stability of the Jl controlled system is unaffected even up 
to variations as high as 30% simultaneously. Further 
investigation yields that the Jl controlled system remains 
stable for simultaneous variations up to 35%. This 
correlates well with the specified multi variable gain margin 
of 30% used in the design. 

These results show that Jl-synthesized controllers can 
achieve good response attenuation even with a constrained 
relative displacement over a large variation in actuator force. 
However, it is seen that PD control loses stability for small 

uncertainties in the actuator force. These results encourage 
further work in this area. 

Table 2: Robust Stabilit and Performance 
Var. Stab. Perf. Perf. Force 
(%) XlIX" XrlXst FacJPo 

Dp 0; PD J.1 PD J.1 PD J.1 PD J.1 

(+) (-) 

0 0 s s 2.2 1.45 3.0 3.0 10.8 10.9 

6.4 0 u s - 1.45 - 3.0 - 10.9 

0 6.4 u s - 1.45 - 3.0 - 10.9 

3.1 3.1 u s - 1.45 - 3.0 - 10.9 

30 0 u s - 1.43 - 3.01 - 13.9 

0 30 u s - 1.42 - 3.02 - 10.9 

30 30 u s - 1.39 - 3.03 - 13.9 

5 Conclusions 

The purpose of this paper was to investigate the feasibility of 
implementing a magnetic bearing as the actuator in an 
auxiliary mass dynamic absorber. Several conclusions can 
be drawn from the results: (1) maintaining stability would 
be very difficult under PD control due to poor robustness to 
the actuator force non-linearity; (2) good main mass 
attenuation is achievable under Jl-synthesized control and is 
robust to the force non-linearity, and (3) a large actuation 
force is required to accommodate the disturbance, which 
represents an additional challenge for magnetic bearing in 
this application. The results encourage more investigation 
into this new application for magnetic bearings. 
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