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Abstract: effect low foundation 
active magnetic bearing suspension is studied Criteria for 
analysing the seriousness of foundation resonances are 
developed and a measurement procedure is proposed for 
analysing real machines. The test machine was measured 
in different mountings to get practical information about 
foundation behaviour. 

1. ~!)duction 

By foundation we mean the mechanical system seen from 
the active magnetic bearing (AMB) electro mag . ;urfacc. 
So, electromagnets, machine stator, machin :d and 
maybe the whole building in some cases have their effects 
on the foundation stiffness (force per displacement). When 
using high-stiffness bearings, for example ball :'-""';ngs, it 
may happen that the effective bearing stiffness is mainly 
determined by the foundation stiffness, not by the bearing 
stiffness. However, in ball-bearings or sleeve bearings there 
is no energy source in the bearings, and low foundation 
stiffness can not cause instability (at least for a nonrotating 
rotor). 

In the case of AMB the situation with low foundation 
stiffness is more serious because there is an energy source 
in the bearings, and actually the bearings do not act as 
dampers at every frequency and in every vibration mode. 
Low foundation stiffness does not only affect bearing 
performance but may cause instability for the suspension 
even for a nonrotating rotor. 

In [1] the effect ofiow foundation stiffness was studied. 
It was found that resonances in the foundation may lead to 
poorly damped vibrations. [1] is the only reference that the 
authors know, where the effect of the foundation stiffness is 
seriously studied. 

Like in rotor, there are always mechanical resonances 
in the foundation. In this paper tools are presented for 
analysing the seriousness of these resonances. When the 
foundation structure will clearly satisfy the criteria 
developed in this paper then it may be forgotten in the 
design of the AMB system (the foundation stiffness may be 
assumed to be infinite) and its effect on performance is 
negligible. Of course the foundation system may be 
modelled and taken into account in the AMB tuning 
process. However, ifwe are trying to make robust bearings 
for series production, then there can not be any individual 
tuning with every machine. The whole system must be far 
enough from critical limits so that no tuning is needed even 
when some parameters are varying. In practice there may 

L 'llperfections in the mounting of a machine or different 
machines may be mounted in different kinds of assemblies. 
So, the resonances in the foundation may vary from case to 
case and the system must be robust enough for these 
variations. 

In this paper a measurement procedure is suggested to 
ensure that the foundation is good enough. The 
measurement can be compared with the computed limits, 
the potential risk frequencies and vibration modes can be 
detected, and the mechnical structure may be modified to 
avoid problems. 

2. T .y 

In this theoretical study we consider foundation compliance 
(force to displacement response). Compliance is a kind of 
inverse of stiffness and it is better suited for this study. The 
purpose of the theoretical study is to get qualitative 
information about how serious high foundation compliance 
is in different frequency ranges and also to develop useful 
criteria that can be used in practical problems to analyse 
real machines. In the analysis, the dynamics of the 
bearings, rotor and foundation are assumed to be linear. 

Consider a radial AMB suspension with two radial 
bearings. A cartesian coordinate system is fixed so that the 
x- and Y-axes coincide with the directions of the 
electromagnet forces and position sensor directions. All the 
forces and positions have positive direction in the direction 
of the X- or Y-axis. Combine the bearing forces acting to 
rotor to a vector Fr (bearing force acting on rotor). The 
order of the forces is X}, X2, Y\ and Y2, where 1 and 2 
refer to the two bearings. Forces acting on the 
electromagnets are combined in vector Fb. Obviously Fb=­
Fr. The electromagnet positions are combined in vector Ilb 
and the positions of the displacement sensors are combined 
in vector Ps. First we suppose that the displacement sensors 
are tightly connected to electromagnets and move with the 
electromagnets ps=Pb. By foundation compliance we mean 
the transfer function from bearing forces Fb to bearing 
displacements Pb. Actually in this presentation we only 
need the frequency response of the compliance transfer 
function. 

The basic idea is simple. When a electromagnet is 
moved, the position of the rotor relative to electromagnet 
and displacement sensor changes and the AMB tries to 
compensate this change by applying force to rotor. The 
same force, direction reversed, is acting also on the 
electromagnet in the stator side. If the compliance of the 



foundation is not zero, the stator side will move, which will 
cause a change in the bearing force and so on. This 
unpleasant feedback through the nonzero foundation 
compliance is illustrated in Figure 1. 
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Figure 1. Feedback through 
compliance. 

nonzero foundation 

The transfer function Gp (rotor bearing transfer function 
from bearing magnet position to force) is quite easy to 
compute when bearing parameters, rotordynamic model 
and magnetic bearing controller are known. Usually these 
are known quite accurately. The dynamic model of the 
rotor and active magnetic bearings is given in the 
Appendix. The "unknown" system Hp (transfer function 
from bearing forces to bearing positions), called here 
foundation compliance, is not usually known well but the 
frequency response of this can be measured. Let us define 
also a transfer function matrix from bearing speed to 
bearing force (acting on rotor) Gv and a transfer function 
from bearing force (acting on bearing) to bearing speed Bv 
(velocity transfer functions). Transfer functions from 
bearing magnet acceleration to bearing force G. and from 
bearing force to bearing acceleration B. (acceleration 
transfer functions) are also defined. These transfer function 
matrixes are interrelated: 

1 Hy(s) = sHp(s), Gy(s) = -Gp(s) 
S 

Ha(s) = s2Hp(s), Ga(s) ={-Gp(S) 
S 

(1) 

where S is the Laplace S (iw on the imaginary axis). 
Gp is a stable transfer function matrix because the 

bearings are designed to work well with zero foundation 
compliance. The transfer function matrix Hp is also stable, 
because it describes mechanical system consisting of 
masses, springs and dampers. Actually we know more 
about the foundation. Because the foundation has no energy 
source, it can only dissipate energy in any frequency. Of 

course there may be for example a vibrating machine near 
the machine in consideration that may transfer mechanical 
power through bearing forces to the rotor bearing system. 
However, because of the assumption of linear dynamics, 
this external noise source does not affect the stability of the 
suspension and it may be left out of the consideration in the 
stability analysis. So, the total mechanical power going to 
foundation must be positive at every frequency. This means 
mathematically 

(2) 

In other words, the transfer function matrix Bv is positive 
definite on the imaginary axis. 

The basics of the multivariable feedback theory and the 
use of singular values can be found for example in [2]. 
According to generalized Nyquist criteria an open-loop 
stable multivariable feedback system (negative feedback) is 
stable if the sum of the eigenvalue encirclements of the 
open loop transfer function matrix around point -1 in the 
complex plane is zero when S encircles the right half plane. 
If A is an eigenvalue of the open loop transfer function 
matrix GH, then the following holds for some nonzero 
eigenvector x 

G(iW)H(iw)x = AX (3) 

The maximum gain (output vector 2-norm per input vector 
2-norm) of GH is limited by CT( GB) where (j means the 

greatest singular value. The greatest singular value of a 
matrix A is the square root of the largest eigenvalue of 
AAH. Because CT( GH) sCi( G)a(H), none of the absolute 

values of the eigenvalues can be> 1, if 

(4) 

where gp is called here the gain limit for the pOSItIon 
transfer function. In (4), velocity or acceleration functions 
could have been used as well, and the corresponding gain 
limits would have been gv and ga respectively. 

Eigenvalue equation (3) can also be written with the 
velocity functions 

G y(iW)B y(iW)x = AX => 

XHHy(iW)X 
A = ----,-:,-----'-,'-----'--

xHG~l(iW)X 

(5) 

Because the real part of the numerator (5) is known to be 
positive (2), there cannot be an eigenvalue on the negative 
real axis if Gv- I or Gv is positive definite (if a matrix is 
positive definite then its inverse is also positive definite). It 
is easy to find the frequency intervals where Gv is positive 



definite using the bearing model and rotordynamic model. 
This, however, is an on-off criterion and in practice it 
would be nice to get some kind of measure of how positive 
definite the system is. Let us define an angle a as follows 

Therefore, the phase angle of xHHyx is near zero (when 

the absolute value is high). The phase angle of xHG~lx is 

located in the sector ±(900-a). It is easy to prove that if 

values of xHGyx will stay in the sector ±(90°-a.) then also 

To compute the maximum, first separate Gv as follows 

G y = Gw +iGYi 

(6) the values of xHG~lx will stay in the same sector. This 

means that an eigenvalue having a great absolute value 
(> 1) cannot be located on the negative real axis, i.e. there is 
margin on the phase angles. Therefore, we are allowed to 
violate the gain limit condition (4) without losing stability. 
When we move away from the resonance frequency llJn, the 

G yr =~(Gy +G~) (7) 

G Yi = ;i (Gy -G~) 

imaginary part is x H G yi x. The extremum values for the 

ratio between real real and imaginary parts are achieved as 

eigenvalues for G ~l G vr' By studying these eigenvalues it 

is possible to find the maximum of the phase angle. 
Now if a is positive then Gv is positive definite and it 

can be multiplied by eia or e-ia and it will still remain 
positive definite. So this is a kind of "phase margin". 
There can be phase errors in the model and still the known 
system will remain positive definite. 

Now let us study the situation when a is zero or slightly 
negative and there is a sharp mechanical resonance. This 
situation is typical at low frequencies. Suppose that the 
foundation structure is a linear mechanical system with 
viscous damping. Suppose further that the damping has 
such a form that there is no modal coupling through 
material damping. If the N first eigenmodes of the 
foundation structure are taken into account, the foundation 
frequency response will be 

(8) 

where T is a constant matrix. 
If there is a sharp mechanical resonance (low modal 

damping 'n) then the corresponding diagonal element dn 

has a very large value near the resonance frequency llJn. 
This means that when the absolute value of the numerator 

XHHyx (5) is high (relative to denominator), its phase 

angle is practically determined by the diagonal element dn. 
In the resonance, the diagonal element is real and positive. 

margin in the phase angles decreases. On the other hand, 
the gain limit condition (4) is met when we are far enough 
from the resonance. In order to maintain stability, the gain 
limit must be met before the margin in the phase angles is 
lost. 

In the neigbourhood of a sharp resonance, the stability 
is preserved if the ratio of the resonance peak and the gain 
limit is less than 

k = 1 . 
sin(-a) 

(9) 

Even though mechanical resonances in the foundation 
would not cause instability, they may considerably alter 
bearing behaviour, for example the unbalance response or 
the response to disturbance forces. Consider the frequency 
response from some disturbance to the bearing force. This 
frequency response function is Gm-(ico) when the 
foundation compliance is zero. When the foundation 
compliance is not zero the frequency response from this 
noise input to the bearing force is 

(1 +G(im)H(im)r1 G NF (im). If the response to some 

harmonic signal ueiwt is F\eiwt with zero foundation 
compliance and F2eiwt with nonzero foundation 
compliance, then 

AF = Fl -F2 = {[1+G(im)H(im)r1G(im)H(im)}F1 . 

(10) 

The greatest singular value of the frequency response 
function in brackets {} is limited as follows [2] 

(11) 

assuming u[G(im)H(im)] < 1. In other words, if the gain 

limit criterion (4) is clearly satisfied then the foundation 
has a negligible effect on the bearing forces and on physical 
quantities related to force (like AMB control voltage). 

The gain limit criterion (4) or the criterion a>O are 
sufficient conditions for the system to be stable. Of course 



'IU 

in some circumstances they may be too conservative, ie. a 
foundation that does not fulfill these criteria may work 
well. However, because of the nature of this problem little 
conservativeness does not matter. We are trying to build a 
robust AMB suspension that will work even if the 
mounting of the machine will change slightly. 

3. Simulation results 

In simulations a model of a real high-speed motor was 
used. The machine parameters are listed in the Appendix. 
In Figure 2 the acceleration function gain limit g. (greatest 
allowed singular value of the matrix H.) and the phase 
margin a are plotted. In the lower subtigure a horizontal 
line marked by k= 10 is plotted. When a is above this line 
a sharp resonance peak is allowed to violate the gain limit 
by factor 10, see Equation (9). 
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Figure 2. Gain limit (greatest allowed singular value) of the 
acceleration function H . and the phase margin a for the 
test machine. 

At low frequencies the gain limit approaches a low­
frequency asymptote defined by the inertia properties of the 
rotor. To ensure that the gain limit is fulfilled at low 
frequencies one has to have essentially more mass in the 
stator than in the rotor. This is usually the case, and 
typically the stator is not floating in free space but is 
connected to something very massive, so the greatest 
singular value of the foundation acceleration matrix will 
decrease at low frequencies proportionally to 0/. The 
frequency response Gv is also positive definite (or almost 
positive definite) up to 400 Hz, which means that even very 
high resonances in this frequency range should not cause 
instability. Despite of this it is possible that a resonance at 
these frequencies causes instability if the electromagnet and 
the displacement sensor are not moving in the same phase. 
For example, if the sensor and magnet are far apart, it may 
happen that in the stator bending mode these will be in the 
other sides of the vibration node and are moving 1800 

phase shifted. However in practice the sensor and the 

magnet are quite near each other. Also in the frequency 
range where the phase margin a has a high value the 
system will tolerate a slight phase shift between the magnet 
and the sensor movement. 

In the frequency range 400 Hz to 850 Hz there is a 
potential risk of instability if there are mechanical 
resonances in the foundation. In this machine the bearings 
are not acting as dampers at these frequencies, because 
there is a sharp phase drop in about 700 Hz in the AMB 
controller (caused by 2nd order low-pass filter) . The 
purpose of this filter is to drop the phase of the bearing 
stiffness below -1800 before the first rotor bending mode. 
Of course it could be possible to make the bearings act as 
dampers up to the first rotor bending mode, then the 
frequency range up to 1 kHz could be made resonance free. 
However, this would lead to high bearing stiffness (and low 
gain limit) at high frequencies, and the hazardous 
frequency range would be transferred to higher frequencies, 
where the foundation resonances are much more 
unpredictable (see Figure 4). Also the power amplifier 
voltage is limited in a practical AMB (so the current rise 
rate is limited) which means that even if the bearings may 
be dampers with small perturbations the bearings are not 
dampers in so high signal amplitudes when the power 
amplifier becomes saturated. To conclude, there is always a 
hazardous frequency range (400 Hz to 850 Hz in this case) 
where foundation resonances may cause problems. 

At high frequencies well beoynd the AMB bandwidth 
the gain limit increases rapidly, so the frequency range 
above 1 kHz is safe. 

In Figure 2 there is also plotted the limit curve at 
rotational speed 700 Hz. Rotational speed will cause the 
gain limit to drop proportionally to 0) in very low 
frequencies. This is not a big problem because the greatest 
singular value of the foundation structure will drop 
proportionally to 0)2 in small frequencies and the rotational 
speed has no significant effect on the phase margin a . Of 
course the situation may be worse when the rotor is more 
gyroscopic. 

There is often an integrator in the AMB controller to 
achieve high static stiffness. This integrator has practically 
no effect on curves in Figure 2. This can be explained so 
that at low frequencies the transfer function G depends 
essentially on the inertial properties of the rotor, not on the 
bearing properties. 

If very high stiffness is required of the bearings, the 
gain limit will stay at low level up to high frequencies. In 
this case the situation is very serious considering 
foundation resonances. From the bearing model (see 
Appendix) it is found that the main problem is not that the 
bearing magnets move but that the displacement sensors 
move. A straightforward solution to this problem is to 
install a mechanical low-pass filter between the bearing 
magnets and displacement sensors. This can be done, for 
example, by connecting the metal piece where the 
displacement sensors are installed by rubber o-ring to the 
machine stator. In the simulation the low-pass filter 3-dB 



frequency was set at 200 Hz and damping factor 0.5 (2nd 
order low-pass filter). This filter will clearly raise the gain 
limit at high frequencies. This may be a solution to 
foundation resonances in the case of very high stiffness 
AMBs. 

4. Experimental results 

The experimental setup is shown in Figure 3. 

Figure 3. Experimental setup. Very elastic steel rack in the 
front. Machine mounted with heavy legs into the concrete 
bed in the background. 

Before the tests the linearized parameters of the bearing 
were measured accurately. By tuning the AMB controller 
we could demonstrate various kinds of limit cycle 
oscillations and unstable behavior especially in axial 
direction. However the oscillations were in the wrong 
frequency range and the instabilities occurred as well in 
very rigid mountings as very elastic mountings. The 
reasons for these "foundation stiffness effects" turned out to 
be anything else but low foundation stiffness: For example 
bearing hysteresis and eddy currents. When all these 
phenomena were carefully analyzed it was found that we 
could not make the test machine unstable by inproper 
mounting. 

We mounted the machine with very soft rubbers (poorly 
damped resonances in the frequency range 1 Hz to 5 Hz). 
No problems. Then we mounted the machine to a very 
elastic steel rack (in front in Figure 3). Now there were 
very poorly damped foundation resonances in the frequency 
range 5 Hz to 30 Hz. Again no problems, even though the 
gain limit was clearly not satisfied. These tests confirmed, 
however, that foundation resonances at low frequencies are 
not very dangerous considering the stability. 

Then we tried to find out why the resonances in the 
frequency range 400 Hz to 850 Hz did not cause stability 
problems. We measured the test machine in three different 
mountings. The rotor was not inside the machine in the 
measurements. First, the stator was in soft rubbers. Then 
we connected heavy legs (about 30 kg) to the bearings and 
mounted these legs with soft rubbers to the ground. In the 

third mounting the stator was with heavy legs which were 
tightly connected to concrete bed (200 kg). The concrete 
bed was mounted with rubbers to ground. See Figure 3. 

In the measurement the machine stator was hit by an 
impulse hamm<?r many times (to get more accurate results) 
in the positions of the electromagnets to the directions of 
the electromagnet. The acceleration responses were 
measured in the directions of every electromagnets by four 
piezoelectric acceleration sensors. From this measurement 
we got the 4*4 frequency response matrix H.(iOl) in 
discrete frequency points. Then the greatest singular value 
of this matrix was computed. The results are plotted in 
Figure 4 with the computed gain limit and phase margin. 
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Figure 4. Measured singular values in different mountings. 

The results were quite surprising. The worst resonances 
were achieved when the machine was mounted in the 
concrete bed. When mounted with heavy legs there is one 
resonance near 400 Hz which may cause problems. In the 
case of the concrete bed there are many hazardous 
resonances in the range 300 Hz to 500 Hz. Even though 
these resonances did not cause instability, they caused very 
large vibration amplitudes, when the AMB was disturbed 
by an signal generator. From that it can be predicted that 
high vibrations could occur, if a rotor with high unbalance 
would be driven over these frequencies. The test machine 
had not high unbalance. 

The best mounting for this machine is to connect the 
machine with rubbers to ground. The resonances at 300 Hz 
and 400 Hz are so well damped (s~0.04 for the 
corresponding mode) that they will remain clearly below 
the gain limit as can be seen from Figure 4. 

At high frequencies above 1 kHz there is a lot of 
resonance in all the mountings. However they are well 
above the AMB bandwidth, so they will not cause 
problems. Also in this machine the stator is relatively 
massive compared with the rotor. So, no extra mass is 
needed to the bearings. 



5. Conclusions 

In this paper the effect of the foundation stiffness was 
studied. It was found that the resonances at low frequencies 
do not (easily) cause suspension instability but may alter 
suspension performance. In the case of AMB there is 
always a hazardous frequency range where AMB stiffness 
is quite high and the foundation resonances may cause 
instability if the resonances are poorly damped. At high 
frequencies clearly above the AMB bandwidth the 
foundation resonances are not dangerous. From this study 
some advice can be stated on how to avoid problems with 
foundation resonances: 

- Do not make AMB unnecessarily stiff 
- Make sufficiently massive bearings to make the basic 

level offoundation stiffness high enough 
- Try to achieve damping to the foundation elastic 

resonances to limit the resonance peaks 

In this paper a gain limit and a phase marging were 
introduced. These are computed from the rotor and AMB 
models and they will state the safe limit for foundation 
compliance and the hazardous frequency ranges. A 
measurement procedure was proposed for the foundation 
frequency response matrix. The measured greatest singular 
value can be compared to the computed gain limit and the 
potential problems can be detected. This information can be 
used to modify the foundation structure, so that the 
problems are avoided. 
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Appendix 

The model of an elastic symmetric rotating shaft is 

[ Bb O]T 
Prb = 0 Bb q (AI) 

[c O]T 
Prs = OS C s q 

where M, G and K are the mass, gyroscopic and stiffness 
matrixes respectively, Db is a transformation matrix from 
real forces to generalized forces, Cs is a transfomlation 
matrix from generalized coordinates q to real 
displacements in the sensor positions. Prb is the vector of 
rotor positions in the bearing locations, Prn is the vector of 
rotor positions in the displacement sensor positions . .Q is 
rotational speed and is the vector of bearing forces acting 
on rotor. 

The electromechanical model of the bearings is 

Li+h(Prb -Pb) +(r +kd I = k)ref 

Fr = C(Prb -Pb) + 2hI 
(A2) 

where L is the inductance, h is the current-force factor, r is 
the coil resistance and ki is the current feedback coefficient. 
I is the vector of current differences in opposite coils 
(actually half of the difTerence) and I ref is the current 
reference vector computed by the position controller. Pb is 
the vector of bearing magnet positions. 

The position controller is given by a transfer function 
matrix Grc(s) 

where Ps is the vector of displacement sensor positions. 
The test machine had the following parameters 

M = diag([21.5 0.44 0.69 0.80]) 

K = 106 diai([O 0 25 93]) 

G =ooo{~ 
0 0 o l 
20 -1.2 

027 j 
-1.2 89 -43 

o 0.27 -43 134 

[o~o I j -0.22 1 0.24 
Bb = 0.18 ,Cs = [1 -0.26 0 

0.23 0.13 

0.23 0.08] 
0.30 0.54 

L = 27 mH, h = 82 N 
A' 

N 
c = 0.67 E6 -, r = H1 

m 

(A3) 

(A4) 

All the radial channels had similar position regulators. The 
transfer function of the requlator was 

2 
G () _ 4444 

PC s -
s2 + 888s + 44442 

[17000(1+-1-) + 388 ] 
. O.l5s 0.00015s+ 1 

(A5) 

and the current feedback coefficient k i was 75 VIA. 


